数据分析——对比思维、A/B test

对比分析

  • 数据大小 :与中值、平均值、目标值、标准做对比
  • 数据波动:变异系数、方差、标准差
  • 数据趋势:时间维度和空间维度
    其中
    时间维度
    横向比较(连续7天每天的销售量)
    纵向比较(同一时期不同品类对比,双十一鞋子、包包、化妆品销量对比)
    同比(同月份的,今年比去年)
    环比(同年的,这个月比上个月)
    定比(固定基期如1月的,则2月和1月对比,3月也和1月对比)
    空间维度
    同类产品比较、同一产品不同地区比较、不同用户层级比较、A/B测试即分组测试
    什么是A/B测试
    根据单一变量的原则对用户随机分组,然后实验
    如测试减肥药物a、b的效果,蒋实验者分两组,一组服用a,一组b,然后看体重变化
    A/B测试流程
    设定指标——创建变量——生成假设——抽样设计(分流)——确定实验时长——收集数据——数据分析
    但是对测试的结果需要考虑一下问题
    1.a效果为0.4大于b效果0.2,但是不能直接得出a优于b,因为缺少假设检验,假设检验用来排除运气、抽样误差等随机因素对结果的误判,可以采用z检验、t检验等等
    2.同时还需考虑猎奇心理,如界面颜色a、b 用户可能对新的改动b产生好奇,从而导致b的数据好看,但是随着时间推移,用户依然会对自己喜欢的颜色选择会比较稳定,因此可以选择通过增大实验时间来平稳这个猎奇导致的问题
    3.实验时保证分组的用户均匀性,同质性
    4.在实验过程中,保证每次分流比值一致,禁止随意切割
    原则
    正交 互斥
    A/B测试的统计学原理
    A/B测试是业务增长的利器, 但是A/B测试背后的原理离不开统计学
    样本代表总体
    大数定律
    多次重复实验中,随机事件发生的概率趋于稳定值,这个稳定值也就是说的概率,或者说频率可以代替概率
    中心极限定理
    当样本容量足够大时,都可以用正太分布近似
    3sigma原则
    也就是在每一次抽样,他的值大概率会在u-3siama,u+3aigma之间,其概率在0.9974
    通过假设检验判断A、B是否存在差异
    样本估计总体
    公式 样本均值+sigma*Z/根号n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值