两种情况, 自定义模型训练后保存, transformers预训练模型保存。
参考代码
\# -\*- coding: utf-8 -\*-
import torch
from transformers import GPT2LMHeadModel
from transformers import AutoTokenizer
from transformers import TextGenerationPipeline
model = GPT2LMHeadModel.from\_pretrained("SkyWork/SkyTextTiny")
# torch.save(model.state\_dict(), 'model.bin')
model.save\_pretrained("GPTMODEL")
tokenizer = AutoTokenizer.from\_pretrained("SkyWork/SkyTextTiny", trust\_remote\_code=True)
tokenizer.save\_pretrained('tokenizer\_directory')
text\_generator = TextGenerationPipeline(model, tokenizer, device=0)
input\_str = "今天是个好天气"
max\_new\_tokens = 20
print(text\_generator(input\_str, max\_new\_tokens=max\_new\_tokens, do\_sample=True))
torch架构把模型分为两部分,身体和大脑, 身体即模型的结构,大脑即权重。
模型结构可能存在config.json中, 权重存在pth文件或bin文件。
1、模型训练后保存及加载
1.1保存
1)保存结构
------- 待解决存在问题 Object of type GPT2Config is not JSON serializable
1 # -\*- coding: utf-8 -\*-
2 import torch 3 from transformers import GPT2LMHeadModel 4 from transformers import AutoTokenizer 5 from transformers import TextGenerationPipeline 6
7 def save\_struc(model): 8 import json 9 with open('config.json', 'w') as f:
10 json.dump(model.config, f)
11 torch.save(model.state\_dict(), 'model.bin')
12
13 model = GPT2LMHeadModel.from\_pretrained('GPTMODEL')
14
15 # 保存模型结构
16 save\_struc(model)
View Code
2)保存权重
model = GPT2LMHeadModel.from\_pretrained("SkyWork/SkyTextTiny")
torch.save(model.state\_dict(), 'model.bin')
其中
model.state\_dict()
把模型得参数权重导出到字典。
1.2 加载
model.load\_state\_dict(torch.load('model.bin'))
先load 成为字典,再load_state_dict 加载入模型,注意这个model已经是 实例化后的即已经有了结构得model。所以只要读入权重即可。
2、预训练模型保存及加载
2.1
保存直接config.json和权重bin都保存再一个目录
model = GPT2LMHeadModel.from\_pretrained("SkyWork/SkyTextTiny")
model.save\_pretrained("GPTMODEL")
目录为
2.2 加载
model = GPT2LMHeadModel.from\_pretrained('GPTMODEL')
最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频,免费分享!
一、大模型全套的学习路线
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
达到L4级别也就意味着你具备了在大多数技术岗位上胜任的能力,想要达到顶尖水平,可能还需要更多的专业技能和实战经验。
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF书籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人在大模型时代,需要不断提升自己的技术和认知水平,同时还需要具备责任感和伦理意识,为人工智能的健康发展贡献力量。
有需要全套的AI大模型学习资源的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【
保证100%免费
】
如有侵权,请联系删除。