大模型:多模态大模型的grounding能力

数据集

a)QW-VL:Visual Genome, RefCOCO, RefCOCO+, RefCOCOg,
b)CogVLM:Visual7W,Flickr30K-Entities
c)Kosmos2:GRIT

OFA

Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework
将多模态任务统一为seq2seq,最大模型900M

文本,图片,物体离散到统一的词表中:
将文本用BPE转化为subwords,将图片简单切分成多个patch并使用image quantization转化为image code,抽取图片中的物体的标签和bounding box并将bounding box离散化为location tokens。统一词表是文本的subwords,图片的image code和物体的location tokens三者的并集。
box表示方式:将坐标映射到1-1000,对应词表中总共1000个location token,一个box即

KOSMOS-2

KOSMOS-2: Grounding Multimodal Large Language Models to the World

kosmos-2的一个重要贡献是解锁了MLLM的grounding能力

为了解锁grounding能力,作者做了一个大规模grounded image-text pair数据集GRIT(caption-box pair)

模型大小follow kosmos-1
训练数据分为四类

  • grounded image-text pairs(新增)
  • text corpora
  • image-caption pairs
  • interleaved image-text data.

box表示:将图像分为32 * 32个bin(箱子,块),总共32 * 32个special token :\(<loc_n>\),每个图像用左上,右下两个bin的token表示
image

Qwen-VL

Qwen-VL: A Versatile Vision-Language Model for
Understanding, Localization, Text Reading, and Beyond

Qwen-7B + OpenClip ViT-bigG
训练:

  1. Pretrain:在 text-image pair 数据上预训练(LAION,CC3M,CC12M) 22%的中文 分辨率224 × 224.
  2. Multi-task Pre-training:Pure text,Caption,Grounding,VQA,OCR, 分辨率448 × 448
    • 用同类型的数据构造 interleaved image-text data
    • Qwen-VL
  3. Supervised Fine-tuning:multi-modal instruction tuning data
    • 数据来自text-image pair和 LLM self-instruction dialogue data
    • Qwen-VL-Chat

image

user: “框出图中的格子衬衫”
assistant: “格子衬衫(588,499),(725,789)”

box 的坐标没有special token,只是将数值Norm到[0-1000)

CogVLM

模型结构:
ViT encoder:EVA2-CLIP-E 除去最后一层
MLP adapter:two-layer MLP
LLM: CogVLM-17B 用的 Vicuna-7B v1.5
Visual expert module:每一层copy一份QKV的W和FFN,(相当于现在有两份vicuna),在输入的时候,image的token用image的QKV和FFN算,text的用text的QKV,FFN算,在算attention的时候image和text token有交互,为的是实现深度融合
image

自行构造grounding的数据集方法:

  • 基于image caption数据
  • spaCy 抽名词
  • GLIPv2 定位 bounding boxes

box 的坐标没有special token,只是将数值Norm到[0-1000)


最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频,免费分享!

一、大模型全套的学习路线

L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署

在这里插入图片描述

达到L4级别也就意味着你具备了在大多数技术岗位上胜任的能力,想要达到顶尖水平,可能还需要更多的专业技能和实战经验。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

四、AI大模型商业化落地方案

在这里插入图片描述

作为普通人在大模型时代,需要不断提升自己的技术和认知水平,同时还需要具备责任感和伦理意识,为人工智能的健康发展贡献力量。

有需要全套的AI大模型学习资源的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费


如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值