一、常见数据类型
首先让我们来看看常见的数据类型以及使用它们替代32位(称为_全精度_或_FP32_)表示的影响。
1. FP16
让我们看一个从32位到16位(称为_半精度_或_FP16_)浮点数的例子:
FP16能表示的数值范围比FP32小很多。
2. BF16
为了获得与原始FP32相似的数值范围,后来又引入了一种名为_bfloat 16_的“截断FP32”类型:
BF16使用与FP16相同的位数,但可以表示更广泛的数值范围,常用于深度学习应用中。
3. INT8
当我们进一步减少位数时,我们接近_基于整数的表示_而不是浮点表示。例如,从FP32转换到只有8位的INT8,结果是原始位数的四分之一:
根据硬件不同,基于整数的计算可能比浮点计算更快,但这并不总是如此,使用更少的位进行计算通常会更快。每次减少位数时,都会执行一个映射,将初始的FP32表示“压缩”到较低的位数中。
在实际应用时我们不需要将整个FP32范围[-3.4e38, 3.4e38]映射到INT8。我们只需要找到一种方法,将我们数据的范围(模型的参数的最大值和最小值内)映射到INT8。
常见的压缩/映射方法有_对称_和_非对称_量化,它们是_线性映射_的形式。
二、对称量化
在对称量化中,原始浮点值的范围被映射到量化空间中以零为中心的对称范围。在之前的例子中,注意量化前后的范围如何保持围绕零对称。
这意味着浮点空间中零的量化值在量化空间中恰好是零。
对称量化的一个很好的例子被称为绝对最大值(absmax)量化。
给定一系列值,我们取最大的绝对值(α)作为执行线性映射的范围。
请注意,[-127, 127] 的值范围代表受限范围。不受限的范围是 [-128, 127],这取决于量化方法。
由于这是一个以零为中心的线性映射,公式非常直接。
我们首先使用以下公式计算比例因子(*s*):
-
b 是我们想要量化到的字节数(8),
-
α 是最大的绝对值,
然后,我们使用 s 来量化输入 x:
填入这些值会得到以下结果:
为了检索原始的FP32值,我们可以使用先前计算的缩放因子(*s)来去量化量化值。
应用量化和去量化的过程来检索原始流程图解,如下所示:
可以看到某些值,例如 3.08 和 3.02,在量化为 INT8 时被赋予了相同的值,即 36。这是因为将这些值反量化回 FP32 时,它们会失去一些精度,不再能够被区分开来。
这通常被称为_量化误差_,我们可以通过找出原始值和反量化值之间的差异来计算这一误差。
一般来说,比特数越低,我们的量化误差就越大。
最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
5. 大模型面试题
面试,不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费
】
如有侵权,请联系删除。