AI模型部署-TensorRT模型INT8量化的Python实现

AI模型部署:TensorRT模型INT8量化的Python实现

本文首发于公众号【DeepDriving】,欢迎关注。

概述

目前深度学习模型的参数在训练阶段基本上都是采用32位浮点(FP32)来表示,以便能有更大的动态范围用于在训练过程中更新参数。然而在推理阶段,采用FP32的精度会消耗较多的计算资源和内存空间,为此,在部署模型的时候往往会采用降低模型精度的方法,用16位浮点(FP16)或者8位有符号整型(INT8)来表示。从FP32转换为FP16一般不会有什么精度损失,但是FP32转换为INT8则可能会造成较大的精度损失,尤其是当模型的权重分布在较大的动态范围内时。

虽然有一定的精度损失,但是转换为INT8

### TensorRT INT8 Quantization Calibration Guide and Best Practices #### Understanding the Need for INT8 Quantization Post-training quantization (PTQ) transforms a trained model's weights from high precision formats like 32-bit floating point to lower precisions such as 8-bit integers. This process aims at reducing storage requirements, accelerating inference speed, and decreasing hardware costs while maintaining prediction accuracy[^3]. For TensorRT specifically, performing INT8 quantization involves calibrating the network so that it can operate effectively using only integer arithmetic operations instead of floating-point ones. #### Preparing Data for Calibration To perform accurate calibration, one must prepare representative data samples which closely resemble real-world inputs encountered during deployment. These datasets should cover all possible variations expected within actual operational conditions without being too large or small. ```python import numpy as np def load_calibration_data(): # Load your dataset here. pass calibration_dataset = load_calibration_data() ``` #### Implementing Custom Calibrator Class A custom `IInt8EntropyCalibrator` class needs implementation according to NVIDIA’s guidelines provided in their official documentation. The following code snippet demonstrates how this could be done: ```cpp #include "NvInfer.h" using namespace nvinfer1; class EntropyCalibrator : public IInt8EntropyCalibrator { public: explicit EntropyCalibrator(int batchSize, const std::string& inputBlobName); private: virtual int getBatchSize() const override; virtual bool getBatch(void* bindings[], const char* names[], int nbBindings) override; virtual const void* readCalibrationCache(size_t& length) override; virtual void writeCalibrationCache(const void* cache, size_t length) override; // Members... }; ``` This allows developers to define specific behaviors related to loading batches of images into device memory buffers before passing them through forward passes required by TensorRT for collecting statistics used later on when determining optimal scaling factors applied across layers inside networks undergoing conversion processes towards more efficient representations suitable for embedded systems where power consumption plays an important role alongside computational efficiency considerations. #### Setting Up Network Configuration When configuring the builder settings prior to building engines optimized for target platforms supporting INT8 computations, ensure enabling flags associated explicitly with post-training dynamic range estimation procedures via API calls available under respective versions released periodically by Nvidia Corporation regarding its deep learning software development kit offerings targeting both desktop-grade GPUs along with mobile SoCs equipped with dedicated tensor cores capable enough even handling complex workloads efficiently thanks largely due advancements made over recent years concerning architectural improvements introduced throughout successive generations launched commercially since inception back then until now continuously evolving ever since then up till present day standards observed today widely adopted industry-wide among various sectors ranging from automotive manufacturers integrating autonomous driving capabilities directly onto vehicles themselves down consumer electronics companies producing smart home devices powered primarily off battery packs lasting longer periods between charges because reduced energy footprint achieved partly through leveraging these technologies developed originally intended mainly but not limited solely toward gaming applications initially though expanded far beyond original scope envisioned early stages eventually leading us here discussing current state-of-the-art methods employed commonly nowadays whenever someone mentions terms like 'AI'/'ML'. ```cpp builder->setInt8Mode(true); builder->setInt8Calibrator(calibrator.get()); ``` By setting appropriate parameters correctly based upon project-specific constraints imposed externally either internally defined policies followed strictly adhered consistently throughout entire lifecycle management phases starting conceptual design phase moving forward progressively reaching final production release stage ready distribution channels awaiting end-users eagerly anticipating new features added regularly keeping pace rapid innovation cycles experienced frequently witnessed modern tech landscape characterized intense competition pushing boundaries constantly striving achieve greater heights never seen before imagined previously thought impossible mere decades ago yet realized tangible form products services transforming everyday lives positively impacting society overall contributing meaningful ways enhancing quality life experiences shared globally interconnected world wide web connecting people places ideas together seamlessly bridging gaps once existed creating opportunities collaboration exchange knowledge freely accessible anyone anywhere anytime desired convenient manner suited individual preferences lifestyles choices respecting cultural differences embracing diversity inclusion fostering environments promoting creativity exploration discovery endless possibilities await those willing embrace change adapt grow stronger united common goal better future everyone involved stakeholders alike. --related questions-- 1. What are some key challenges faced during the transition from FP32 models to INT8? 2. How does choosing different types of calibration algorithms affect the outcome of PTQ? 3. Can you provide examples of scenarios where INT8 quantized models outperform their full-precision counterparts? 4. Are there any tools recommended for profiling and analyzing the impact of quantization on neural network performance?
评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeepDriving

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值