AI大模型量化格式介绍(GPTQ,GGML,GGUF,FP16/INT8/INT4)

在 HuggingFace 上下载模型时,经常会看到模型的名称会带有fp16GPTQGGML等字样,对不熟悉模型量化的同学来说,这些字样可能会让人摸不着头脑,我开始也是一头雾水,后来通过查阅资料,总算有了一些了解,本文将介绍一些常见的模型量化格式,因为我也不是机器学习专家,所以本文只是对这些格式进行简单的介绍,如果有错误的地方,欢迎指正。

What 量化

量化在 AI 模型中,特别是在深度学习模型中,通常指的是将模型中的参数(例如权重和偏置)从浮点数转换为低位宽度的整数,例如从 32 位的浮点数转换为 8 位整数。通俗地说,量化就像是把一本详细的、用高级词汇写的书简化为一个简短的摘要或儿童版故事。这个摘要或儿童版故事占用的空间更小,更容易传播,但可能会丢失一些原始书中的细节。

Why 量化

量化的目的主要有以下几点:

  1. 减少存储需求:量化后的模型大小会显著减小,这使得模型更容易部署在存储资源有限的设备上,如移动设备或嵌入式系统。
  2. 加速计算:整数运算通常比浮点运算更快,尤其在没有专门的浮点硬件支持的设备上。
  3. 减少能耗:在某些硬件上,整数运算消耗的能量更少。

但是,量化也有一个缺点:它可能会导致模型的精度下降。因为你实际上是在用较低的精度来表示原始的浮点数,可能会损失一些信息,这意味着模型的能力会变差。为了平衡这种精度损失,研究

INT8、FP16和FP32是不同的数据类型用于表示数字的精度和存储方式。 INT8是指八位整型数据类型,占用1个字节,用8位二进制表示一个数字,它是一种定点计算方式,适用于对整数进行运算,虽然精度较低,但数据量小、能耗低,计算速度相对更快,适合在移动终端进行AI计算。 FP16是指半精度浮点数数据类型,占用2个字节,用16位二进制表示一个数字,其中1位为符号位,5位为指数位,10位为有效数字位。与FP32相比,FP16的访存消耗仅为1/2,因此在一些GPU中可以加速计算速度,但也容易造成溢出。 FP32是指单精度浮点数数据类型,占用4个字节,用32位二进制表示一个数字,其中1位为符号位,8位为指数位,23位为尾数位。FP32精度相对较高,但相应地需要更多的存储空间和计算资源。 因此,INT8适用于对整数进行计算的场景,FP16适用于移动终端等资源受限的场景,而FP32适用于需要较高精度的计算场景。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [FP32、FP16INT8](https://blog.csdn.net/weixin_44942126/article/details/115014754)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [深度学习模型权重数值精度FP32,FP16,INT8数值类型区别](https://blog.csdn.net/baidu_39629638/article/details/121460896)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值