LLAMA中的FFN层作用是什么?
总结上网上看到的一些分析,毕竟当时Transformer提出来的时候,可能也没考虑到会被研究的这么细。
-
模型结构本身
[ Attention is Not All You Need: Pure Attention Loses Rank Doubly Exponentially with Depth] 论文中做了实验,对于单纯的self-attentation而不考虑实验残差和MLP的话,我们堆叠了n层,整个模型的秩会很快坍缩,也即所有表征趋于一个vector,而加上了MLP和残差的话会好很多,因此MLP这个东西是必要的。 -
增加表达能力
升维之后的线性变换通常伴随着一个非线性激活函数。非线性激活函数的引入打破了线性模型的限制,使得模型可以对数据进行更复杂的变换。降维操作将升维后的结果映射回原始维度,从而将这些非线性特征组合到最终的输出中。这种操作增强了模型的表达能力,使其能够表示更加复杂的函数关系。 -
存储知识
使用了激活函数,如门控类的函数的话,就可以从key-value的角度来看待FFN了,FFN本身占据了Transformer的很大的参数量,对于FFN来说,第一层线性变换是 Key Memory,第二层线性变换是 Value Memory。可以参考论文[Transformer Feed-Forward Layers Are Key-Value Memories]和[End-To-End Memory Networks].
总结:FFN的作用是增加表达能力、模型结构上去掉FFN会导致秩坍缩更快、存储知识
最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】