欧拉回路

欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。

Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
Sample Output
1
0

题解;先判断是否是连通图,然后判断各点所连的边是不是偶数。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n,m;
int f[1010],b[1010];
int Find(int x)
{
    if(f[x]==x)
    return x;
    else
    {
    	f[x]=Find(f[x]);
    	return f[x];  
    }
}
void merge(int x,int y)
{
    int tx=Find(x);
    int ty=Find(y);
    f[tx]=ty;
}
int main()
{
    while(~scanf("%d",&n))
    {
    	if(n==0)
    	break;
    	int i,j,x,y;
        memset(b,0,sizeof(b));
        for(i=1;i<=n;i++)
        f[i]=i;
        scanf("%d",&m);
        for(i=0;i<m;i++)
        {
            scanf("%d%d",&x,&y);
            b[x]++;
            b[y]++;
            merge(x,y);
        }
        int a1=0,a2=0;
        for(i=1;i<=n;i++)
        {
            if(f[i]==i)
            a1++;
            if(b[i]%2)
            a2++;
        }
        if(a1==1&&a2==0)
        printf("1\n");
        else
        printf("0\n");
    }
    return 0;
}
©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页