7-2 循环-训练之后

在进行了艰苦的篮球训练之后,two_bi队队长决定把球收起来放到篮子里。一共有n个球,m个篮子,篮子从左到右放成一排并且从1到m编好号。

Two_bi队队长决定这样放球,他会将球放在球最少的篮子里,如果此时有多个选择,他会将球放在多个选择里满足使|(m+1)/2-i|(即绝对值)最小的第i个篮子,如果还是有多个选择,他会选择多个选择里编号最小的。
现在每次放一个球,求出到放完为止,每个球放进去的篮子编号。

输入格式:

两个正整数n,m(1<=n,m<=10^5)。

输出格式:

输出n个数,每个数一行,第i个数为第i个球所放篮筐编号。

输入样例:

在这里给出一组输入。例如:

4 3

输出样例:

在这里给出相应的输出。例如:

2
1
3
2

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

#include<bits/stdc++.h>
#include<math.h>
#include<string.h>
#include<algorithm>
int count(int a, int n);
using namespace std;
int main(){
    int n, m;
    cin >> n>>m;
    int min = 1,p=1;
    int save[100050] = {0};
    // int savecp[100050] = {0};
    double cp[100050] = {0};
    int a[100050] = {0}; //存储球的数量
    a[(m+1)/2] = 1;
    for (int i = 1; i <= m;i++){
        cp[i] = fabs(1.0*(m + 1) / 2 - i);
    }
    cout << (m+1) / 2<<endl;
    for (int i = 2; i <= n;i++){
        int mincp = 1;
        min = 1;
        p = 1;
        for (int j = 1; j <= m;j++){
            if(a[j]<a[min]){
                min = j;
            }
        }//找出最少球的篮子
        for (int j = 1; j <= m;j++){
            if(a[min]==a[j]){
                save[p] = j;
                p++;
            }//如果最少球的篮子有多个,读取篮子序号并且保存;
        }
        for (int j = 1; j < p;j++){
            if(cp[save[j]]<cp[save[mincp]]){
                mincp = j;
            }
        } //比较篮子的cp值,找到最小的cp值;
        // int o = 1;
        // for (int j = 1; j <= p;j++){
        //     if(cp[save[j]]==cp[save[mincp]]){
        //         savecp[o] = save[j];
        //         o++;
        //     }
        //}//如果最小的cp值有多个,读取篮子序号并且保存;
        // int minsavecp = 1;
        // for (int j = 1; j <= o;j++){
        //     if(savecp[j]<savecp[minsavecp]){
        //         minsavecp = j;
        //     }
        //}
        a[save[mincp]]++;
        cout << save[mincp]<<endl;
    }
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Step 1: 下载数据集 首先,我们需要下载一个开放的语言模型数据集,例如 Penn Treebank (PTB) 或 WikiText-2。这些数据集包含了大量的文本数据用于训练语言模型。 我们可以使用以下命令来下载 PTB 数据集: ``` !wget https://raw.githubusercontent.com/pytorch/examples/master/word_language_model/data/penn/train.txt !wget https://raw.githubusercontent.com/pytorch/examples/master/word_language_model/data/penn/valid.txt !wget https://raw.githubusercontent.com/pytorch/examples/master/word_language_model/data/penn/test.txt ``` Step 2: 数据预处理 接下来,我们需要对数据进行预处理。首先,我们需要将文本数据转化为数字形式,以便于模型使用。我们可以使用 PyTorch 内置的 Tokenizer 来将每个单词转化为一个唯一的数字 ID。 ``` import torch import torch.nn as nn import torch.optim as optim import numpy as np from torch.utils.data import DataLoader from torch.utils.data import Dataset from torchtext import data from torchtext import datasets TEXT = data.Field(lower=True, batch_first=True, fix_length=500) train, val, test = datasets.PennTreebank.splits(TEXT) TEXT.build_vocab(train, vectors="glove.6B.100d") ``` 这里我们使用了一个预训练的词向量(glove.6B.100d),以便于在训练时使用。接下来,我们需要将数据集转化为 PyTorch 中的 Dataset 和 DataLoader,以便于模型训练时使用。 ``` train_iter, val_iter, test_iter = data.BPTTIterator.splits( (train, val, test), batch_size=32, bptt_len=35, device=device, repeat=False ) ``` Step 3: 定义模型 我们使用一个简单的循环神经网络模型来进行语言建模。这里我们使用了一个双层的 LSTM 模型。 ``` class RNNModel(nn.Module): def __init__( self, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False, ): super(RNNModel, self).__init__() self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) self.rnn = nn.LSTM(ninp, nhid, nlayers, dropout=dropout) self.decoder = nn.Linear(nhid, ntoken) self.init_weights() self.nhid = nhid self.nlayers = nlayers self.ntoken = ntoken if tie_weights: self.decoder.weight = self.encoder.weight def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, input, hidden): emb = self.drop(self.encoder(input)) output, hidden = self.rnn(emb, hidden) output = self.drop(output) decoded = self.decoder(output.view(output.size(0) * output.size(1), output.size(2))) return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden def init_hidden(self, bsz): weight = next(self.parameters()) return ( weight.new_zeros(self.nlayers, bsz, self.nhid), weight.new_zeros(self.nlayers, bsz, self.nhid), ) ``` Step 4: 训练模型 接下来,我们可以开始训练模型。我们以开发集困惑度停止下降为训练终止条件。我们训练模型的代码如下: ``` device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') ntokens = len(TEXT.vocab.stoi) emsize = 100 nhid = 256 nlayers = 2 dropout = 0.5 model = RNNModel(ntokens, emsize, nhid, nlayers, dropout).to(device) criterion = nn.CrossEntropyLoss() lr = 20.0 optimizer = torch.optim.SGD(model.parameters(), lr=lr) scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, 0.5) best_val_loss = float("inf") epochs = 50 best_model = None for epoch in range(1, epochs + 1): train_loss = 0.0 val_loss = 0.0 hidden = model.init_hidden(32) model.train() for batch, data in enumerate(train_iter): inputs, targets = data.text, data.target inputs = inputs.to(device) targets = targets.view(-1).to(device) hidden = tuple(h.data for h in hidden) model.zero_grad() output, hidden = model(inputs, hidden) loss = criterion(output.view(-1, ntokens), targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.25) optimizer.step() train_loss += loss.item() model.eval() hidden = model.init_hidden(32) with torch.no_grad(): for batch, data in enumerate(val_iter): inputs, targets = data.text, data.target inputs = inputs.to(device) targets = targets.view(-1).to(device) hidden = tuple(h.data for h in hidden) output, hidden = model(inputs, hidden) loss = criterion(output.view(-1, ntokens), targets) val_loss += loss.item() train_loss /= len(train_iter) val_loss /= len(val_iter) print(f"Epoch: {epoch}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}") if val_loss < best_val_loss: best_val_loss = val_loss best_model = model if scheduler is not None: scheduler.step() ``` Step 5: 抽取词向量 训练结束后,我们可以从训练好的 RNN 模型中抽取出每个单词的词向量。这可以通过获取训练好的词嵌入层的权重来实现。 ``` embeddings = best_model.encoder.weight.detach().cpu().numpy() word2idx = TEXT.vocab.stoi idx2word = TEXT.vocab.itos ``` Step 6: 分析词向量 最后,我们可以对抽取出的词向量进行分析,例如使用 k 近邻算法来找到与某个单词最接近的单词。 ``` from sklearn.neighbors import NearestNeighbors knn = NearestNeighbors(n_neighbors=5, metric="cosine") knn.fit(embeddings) def get_nearest_neighbors(word): word_idx = word2idx[word] word_embedding = embeddings[word_idx].reshape(1, -1) distances, indices = knn.kneighbors(word_embedding) neighbors = [idx2word[idx] for idx in indices[0]] return neighbors get_nearest_neighbors("cat") ``` 这将返回与单词 "cat" 最接近的 5 个单词。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值