序贯模型
序贯模型是多个网络层的线性堆叠,是函数式模型的简略版,为最简单的线性、从头到尾的结构顺序,不发生分叉。
1、应用序贯模型的基本步骤
- model.add,添加层;
- model.compile,模型训练的BP模式设置;
- model.fit,模型训练参数设置 + 训练;
- 模型评估
- 模型预测
2、创建
1、可以通过向Sequential模型传递一个layer的list来构造该模型:
from keras.models import Sequential
from keras.layers import Dense, Activation
model = Sequential([
Dense(32, units=784),
Activation('relu'),
Dense(10),
Activation('softmax'),
])
2、也可以通过.add()方法一个个的将layer加入模型中:
model = Sequential()
model.add(Dense(32, input_shape=(784,)))
model.add(Activation('relu'))
3、指定输入数据的shape
模型需要知道输入数据的shape,因此,Sequential的第一层需要接受一个关于输入数据shape的参数,后面的各个层则可以自动的推导出中间数据的shape,因此不需要为每个层都指定这个参数。有几种方法来为第一层指定输入数据的shape
1、传递一个input_shape的关键字参数给第一层,input_shape是一个tuple类型的数据
model = Sequential()
model.add(Dense(64, input_shape=(20,), activation='relu'))
2、有些2D层,如Dense,支持通过指定其输入维度input_dim来隐含的指定输入数据shape,是一个Int类型的数据。一些3D的时域层支持通过参数input_dim和input_length来指定输入shape。
model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
4、编译
在训练模型之前,我们需要通过compile来对学习过程进行配置。compile接收三个参数:优化器optimizer,损失函数loss,指标列表metrics