Kmeans聚类算法的基本原理与应用
内容说明:主要介绍Kmeans聚类算法的数学原理,并使用matlab编程实现Kmeans的简单应用,不对之处还望指正。
参考资料:http://www.cnblogs.com/tiandsp/archive/2013/04/24/3040883.html
一、Kmeans数学原理
以往的回归分类、朴素贝叶斯分类、SVM分类的样本的标签(类别)是已知的,通过大量的训练样本训练得到模型,然后判断新的样本所属已知类别中的哪一类。而Kmeans聚类属于无监督学习,样本所属的类别是未知的,只是根据特征将样本分类,且类别空间也是根据需要人为选定的。

本文深入介绍了Kmeans聚类算法的数学原理,阐述其作为无监督学习方法如何根据特征对样本进行分类。通过MATLAB实现展示了Kmeans的迭代过程,并探讨了算法对初始条件的敏感性。此外,还提供了实际应用案例,以学生成绩为例进行聚类分析。
最低0.47元/天 解锁文章
644

被折叠的 条评论
为什么被折叠?



