基础算法(二):Kmeans聚类算法的基本原理与应用

本文深入介绍了Kmeans聚类算法的数学原理,阐述其作为无监督学习方法如何根据特征对样本进行分类。通过MATLAB实现展示了Kmeans的迭代过程,并探讨了算法对初始条件的敏感性。此外,还提供了实际应用案例,以学生成绩为例进行聚类分析。
摘要由CSDN通过智能技术生成

Kmeans聚类算法的基本原理与应用


      内容说明:主要介绍Kmeans聚类算法的数学原理,并使用matlab编程实现Kmeans的简单应用,不对之处还望指正。

       参考资料:http://www.cnblogs.com/tiandsp/archive/2013/04/24/3040883.html

一、Kmeans数学原理

       以往的回归分类、朴素贝叶斯分类、SVM分类的样本的标签(类别)是已知的,通过大量的训练样本训练得到模型,然后判断新的样本所属已知类别中的哪一类。而Kmeans聚类属于无监督学习,样本所属的类别是未知的,只是根据特征将样本分类,且类别空间也是根据需要人为选定的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值