洛谷P3915 斜率优化线性dp

题意:

n n n个玩具,每个玩具有一个价值 c i c_{i} ci,需要把这个玩具分成任意段,使得分割总代价最小。每分割出一段 [ l , r ] [l,r] [l,r],代价是 ( r − l + ∑ i = l r c i − L ) 2 (r-l+\sum_{i=l}^{r}c_{i}-L)^2 (rl+i=lrciL)2

方法:

一个经典的线性 d p dp dp

d p [ i ] dp[i] dp[i]为分割前 i i i个的最小代价,那么 d p [ i ] = m a x ( d p [ j ] + c o s t ( j + 1 , i ) ) , j ∈ [ 0 , i − 1 ] dp[i]=max(dp[j]+cost(j+1,i)),j\in[0,i-1] dp[i]=max(dp[j]+cost(j+1,i)),j[0,i1],时间复杂度 O ( n 2 ) O(n^2) O(n2)

c o s t cost cost展开,得到

d p [ i ] = m i n ( d p [ j ] + ( i − j − 1 + g e t s u m ( j + 1 , i ) − L − 1 ) 2 ) dp[i]=min(dp[j]+(i-j-1+getsum(j+1,i)-L-1)^2) dp[i]=min(dp[j]+(ij1+getsum(j+1,i)L1)2)

g e t s u m ( l , r ) getsum(l,r) getsum(l,r)以前缀和形式展开

d p [ i ] = m i n ( d p [ j ] + ( i − j − 1 + s u m [ i ] − s u m [ j ] − L − 1 ) 2 ) dp[i]=min(dp[j]+(i-j-1+sum[i]-sum[j]-L-1)^2) dp[i]=min(dp[j]+(ij1+sum[i]sum[j]L1)2)

i , j i,j i,j分类,并且将常数项归入任意一类,这里将常数归入 j j j

d p [ i ] = m i n ( d p [ j ] + ( ( i + s u m [ i ] ) − ( j + s u m [ j ] + L + 1 ) ) 2 ) dp[i]=min(dp[j]+((i+sum[i])-(j+sum[j]+L+1))^2) dp[i]=min(dp[j]+((i+sum[i])(j+sum[j]+L+1))2)

a [ i ] = i + s u m [ i ] , b [ j ] = j + s u m [ j ] + L + 1 a[i]=i+sum[i],b[j]=j+sum[j]+L+1 a[i]=i+sum[i],b[j]=j+sum[j]+L+1

d p [ i ] = m i n ( d p [ j ] + ( a [ i ] − b [ j ] ) 2 ) dp[i]=min(dp[j]+(a[i]-b[j])^2) dp[i]=min(dp[j]+(a[i]b[j])2)

完全平方展开

d p [ i ] = m i n ( d p [ j ] + a [ i ] 2 + b [ j ] 2 − 2 ∗ a [ i ] ∗ b [ j ] ) dp[i]=min(dp[j]+a[i]^2+b[j]^2-2*a[i]*b[j]) dp[i]=min(dp[j]+a[i]2+b[j]22a[i]b[j])

假设 j j j就是我们找到的最佳决策点,那么

d p [ i ] = d p [ j ] + a [ i ] 2 + b [ j ] 2 − 2 ∗ a [ i ] ∗ b [ j ] dp[i]=dp[j]+a[i]^2+b[j]^2-2*a[i]*b[j] dp[i]=dp[j]+a[i]2+b[j]22a[i]b[j]

j j j分离,一般地,应该是分离从哪里转移来的项

2 ∗ a [ i ] ∗ b [ j ] + d p [ i ] − a [ i ] 2 = d p [ j ] + b [ j ] 2 2*a[i]*b[j]+dp[i]-a[i]^2=dp[j]+b[j]^2 2a[i]b[j]+dp[i]a[i]2=dp[j]+b[j]2

b [ j ] = x b[j]=x b[j]=x,右边所有的(即分出来的 j j j d p [ j ] + b [ j ] 2 = y dp[j]+b[j]^2=y dp[j]+b[j]2=y得到

l : 2 ∗ a [ i ] ∗ x + d p [ i ] − a [ i ] 2 = y l:2*a[i]*x+dp[i]-a[i]^2=y l:2a[i]x+dp[i]a[i]2=y

这是一个截距不确定的一次函数,我们将点 ( k , d p [ k ] ) , k ∈ [ 0 , i − 1 ] (k,dp[k]),k\in[0,i-1] (k,dp[k]),k[0,i1]描在坐标轴上,因为 d p [ i ] dp[i] dp[i]肯定从 j ∈ [ 0 , i − 1 ] j\in[0,i-1] j[0,i1]转移来,那么他必然经过其中一个点,我们需要让 d p [ i ] dp[i] dp[i]最小,这里就等价于让截距 d p [ i ] − a [ i ] 2 dp[i]-a[i]^2 dp[i]a[i]2最小,那么我们只需要维护描的点的下凸壳, l l l要选择一点经过,那么能使 l l l的截距最小的点一定是下凸壳内的。同理,如果求的是 m a x max max,需要维护一个上凸壳。

那么下凸壳哪个点是符合条件的呢?应该是凸包内第一对斜率 ≥ k l \geq k_{l} kl的点对 ( P i , P i + 1 ) (P_i,P_{i+1}) (Pi,Pi+1)的第一个点,因为要使多边形上的某个点最近某条直线,那么这个点相关的两条线段的所在直线的斜率应该是一个比 k l k_l kl大,一个比 k l k_l kl小的,维护的是下凸壳,保证了斜率递增,所以上述的点对的第一个点 P i P_{i} Pi就是要找的点,又因为恰好下凸壳内的相邻点对斜率递增,所以我们可以单调队列维护他,我们要的一定是上一次用的后面的。

另外,我们推出了一个转移方程是

2 ∗ a [ i ] ∗ b [ j ] + d p [ i ] − a [ i ] 2 = d p [ j ] + b [ j ] 2 2*a[i]*b[j]+dp[i]-a[i]^2=dp[j]+b[j]^2 2a[i]b[j]+dp[i]a[i]2=dp[j]+b[j]2

单调队列的头即最佳决策点 j j j,此时可以直接通过这个方程推出 d p [ i ] dp[i] dp[i],同时转移方程原来还满足

d p [ i ] = m a x ( d p [ j ] + c o s t ( j + 1 , i ) ) dp[i]=max(dp[j]+cost(j+1,i)) dp[i]=max(dp[j]+cost(j+1,i))

也可以使用这个递推

需要注意的是:

(1)描的点是 ( x , y ) (x,y) (x,y),而不是 ( i , d p [ i ] ) (i,dp[i]) (i,dp[i])

(2)可能 [ 1 , i ] [1,i] [1,i]为一段,也就是从 0 0 0转移而来,所以一开始要将 0 0 0构成的点对放入队列

#include<bits/stdc++.h>
#define ll long long
using namespace std;

int n,c[50005],L,q[50005];
ll sum[50005],dp[50005];

inline ll x(int k)
{
	return k+sum[k]+L+1;
}

inline ll y(int k)
{
	return dp[k]+x(k)*x(k);
}

inline double k(int temp1,int temp2)
{
	return 1.0*(y(temp2)-y(temp1))/(x(temp2)-x(temp1));
}

inline ll cost(int l,int r)
{
	auto getsum=[&](int l,int r){return sum[r]-sum[l-1];};
	return (r-l+getsum(l,r)-L)*(r-l+getsum(l,r)-L);
}

int main()
{
	//单调队列记录的是(i,dp[i])的i,而不是(x,y)
	//记录这个可以获知(x,y),但只记录(x,y)无法获得j,需要多加一个位置在向量中
	//如果记录的是点对,0对应的点对是(0,(L+1)^2),不是(0,0)
	scanf("%d%d",&n,&L);
	for(int i=1;i<=n;i++)
	{
		scanf("%lld",&sum[i]);
		sum[i]+=sum[i-1];
	}
	for(int i=1,sta=1,en=1;i<=n;i++)
	{
		while(en-sta+1>=2&&k(q[sta],q[sta+1])<2.0*(i+sum[i])) sta++;
		int j=q[sta]; dp[i]=dp[j]+cost(j+1,i);
		while(en-sta+1>=2&&k(q[en],q[en-1])>k(i,q[en])) en--;
		q[++en]=i;
	}
	cout<<dp[n];
	return 0;	
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值