洛谷P3915 斜率优化线性dp

题意:

n n n个玩具,每个玩具有一个价值 c i c_{i} ci,需要把这个玩具分成任意段,使得分割总代价最小。每分割出一段 [ l , r ] [l,r] [l,r],代价是 ( r − l + ∑ i = l r c i − L ) 2 (r-l+\sum_{i=l}^{r}c_{i}-L)^2 (rl+i=lrciL)2

方法:

一个经典的线性 d p dp dp

d p [ i ] dp[i] dp[i]为分割前 i i i个的最小代价,那么 d p [ i ] = m a x ( d p [ j ] + c o s t ( j + 1 , i ) ) , j ∈ [ 0 , i − 1 ] dp[i]=max(dp[j]+cost(j+1,i)),j\in[0,i-1] dp[i]=max(dp[j]+cost(j+1,i)),j[0,i1],时间复杂度 O ( n 2 ) O(n^2) O(n2)

c o s t cost cost展开,得到

d p [ i ] = m i n ( d p [ j ] + ( i − j − 1 + g e t s u m ( j + 1 , i ) − L − 1 ) 2 ) dp[i]=min(dp[j]+(i-j-1+getsum(j+1,i)-L-1)^2) dp[i]=min(dp[j]+(ij1+getsum(j+1,i)L1)2)

g e t s u m ( l , r ) getsum(l,r) getsum(l,r)以前缀和形式展开

d p [ i ] = m i n ( d p [ j ] + ( i − j − 1 + s u m [ i ] − s u m [ j ] − L − 1 ) 2 ) dp[i]=min(dp[j]+(i-j-1+sum[i]-sum[j]-L-1)^2) dp[i]=min(dp[j]+(ij1+sum[i]sum[j]L1)2)

i , j i,j i,j分类,并且将常数项归入任意一类,这里将常数归入 j j j

d p [ i ] = m i n ( d p [ j ] + ( ( i + s u m [ i ] ) − ( j + s u m [ j ] + L + 1 ) ) 2 ) dp[i]=min(dp[j]+((i+sum[i])-(j+sum[j]+L+1))^2) dp[i]=min(dp[j]+((i+sum[i])(j+sum[j]+L+1))2)

a [ i ] = i + s u m [ i ] , b [ j ] = j + s u m [ j ] + L + 1 a[i]=i+sum[i],b[j]=j+sum[j]+L+1 a[i]=i+sum[i],b[j]=j+sum[j]+L+1

d p [ i ] = m i n ( d p [ j ] + ( a [ i ] − b [ j ] ) 2 ) dp[i]=min(dp[j]+(a[i]-b[j])^2) dp[i]=min(dp[j]+(a[i]b[j])2)

完全平方展开

d p [ i ] = m i n ( d p [ j ] + a [ i ] 2 + b [ j ] 2 − 2 ∗ a [ i ] ∗ b [ j ] ) dp[i]=min(dp[j]+a[i]^2+b[j]^2-2*a[i]*b[j]) dp[i]=min(dp[j]+a[i]2+b[j]22a[i]b[j])

假设 j j j就是我们找到的最佳决策点,那么

d p [ i ] = d p [ j ] + a [ i ] 2 + b [ j ] 2 − 2 ∗ a [ i ] ∗ b [ j ] dp[i]=dp[j]+a[i]^2+b[j]^2-2*a[i]*b[j] dp[i]=dp[j]+a[i]2+b[j]22a[i]b[j]

j j j分离,一般地,应该是分离从哪里转移来的项

2 ∗ a [ i ] ∗ b [ j ] + d p [ i ] − a [ i ] 2 = d p [ j ] + b [ j ] 2 2*a[i]*b[j]+dp[i]-a[i]^2=dp[j]+b[j]^2 2a[i]b[j]+dp[i]a[i]2=dp[j]+b[j]2

b [ j ] = x b[j]=x b[j]=x,右边所有的(即分出来的 j j j d p [ j ] + b [ j ] 2 = y dp[j]+b[j]^2=y dp[j]+b[j]2=y得到

l : 2 ∗ a [ i ] ∗ x + d p [ i ] − a [ i ] 2 = y l:2*a[i]*x+dp[i]-a[i]^2=y l:2a[i]x+dp[i]a[i]2=y

这是一个截距不确定的一次函数,我们将点 ( k , d p [ k ] ) , k ∈ [ 0 , i − 1 ] (k,dp[k]),k\in[0,i-1] (k,dp[k]),k[0,i1]描在坐标轴上,因为 d p [ i ] dp[i] dp[i]肯定从 j ∈ [ 0 , i − 1 ] j\in[0,i-1] j[0,i1]转移来,那么他必然经过其中一个点,我们需要让 d p [ i ] dp[i] dp[i]最小,这里就等价于让截距 d p [ i ] − a [ i ] 2 dp[i]-a[i]^2 dp[i]a[i]2最小,那么我们只需要维护描的点的下凸壳, l l l要选择一点经过,那么能使 l l l的截距最小的点一定是下凸壳内的。同理,如果求的是 m a x max max,需要维护一个上凸壳。

那么下凸壳哪个点是符合条件的呢?应该是凸包内第一对斜率 ≥ k l \geq k_{l} kl的点对 ( P i , P i + 1 ) (P_i,P_{i+1}) (Pi,Pi+1)的第一个点,因为要使多边形上的某个点最近某条直线,那么这个点相关的两条线段的所在直线的斜率应该是一个比 k l k_l kl大,一个比 k l k_l kl小的,维护的是下凸壳,保证了斜率递增,所以上述的点对的第一个点 P i P_{i} Pi就是要找的点,又因为恰好下凸壳内的相邻点对斜率递增,所以我们可以单调队列维护他,我们要的一定是上一次用的后面的。

另外,我们推出了一个转移方程是

2 ∗ a [ i ] ∗ b [ j ] + d p [ i ] − a [ i ] 2 = d p [ j ] + b [ j ] 2 2*a[i]*b[j]+dp[i]-a[i]^2=dp[j]+b[j]^2 2a[i]b[j]+dp[i]a[i]2=dp[j]+b[j]2

单调队列的头即最佳决策点 j j j,此时可以直接通过这个方程推出 d p [ i ] dp[i] dp[i],同时转移方程原来还满足

d p [ i ] = m a x ( d p [ j ] + c o s t ( j + 1 , i ) ) dp[i]=max(dp[j]+cost(j+1,i)) dp[i]=max(dp[j]+cost(j+1,i))

也可以使用这个递推

需要注意的是:

(1)描的点是 ( x , y ) (x,y) (x,y),而不是 ( i , d p [ i ] ) (i,dp[i]) (i,dp[i])

(2)可能 [ 1 , i ] [1,i] [1,i]为一段,也就是从 0 0 0转移而来,所以一开始要将 0 0 0构成的点对放入队列

#include<bits/stdc++.h>
#define ll long long
using namespace std;

int n,c[50005],L,q[50005];
ll sum[50005],dp[50005];

inline ll x(int k)
{
	return k+sum[k]+L+1;
}

inline ll y(int k)
{
	return dp[k]+x(k)*x(k);
}

inline double k(int temp1,int temp2)
{
	return 1.0*(y(temp2)-y(temp1))/(x(temp2)-x(temp1));
}

inline ll cost(int l,int r)
{
	auto getsum=[&](int l,int r){return sum[r]-sum[l-1];};
	return (r-l+getsum(l,r)-L)*(r-l+getsum(l,r)-L);
}

int main()
{
	//单调队列记录的是(i,dp[i])的i,而不是(x,y)
	//记录这个可以获知(x,y),但只记录(x,y)无法获得j,需要多加一个位置在向量中
	//如果记录的是点对,0对应的点对是(0,(L+1)^2),不是(0,0)
	scanf("%d%d",&n,&L);
	for(int i=1;i<=n;i++)
	{
		scanf("%lld",&sum[i]);
		sum[i]+=sum[i-1];
	}
	for(int i=1,sta=1,en=1;i<=n;i++)
	{
		while(en-sta+1>=2&&k(q[sta],q[sta+1])<2.0*(i+sum[i])) sta++;
		int j=q[sta]; dp[i]=dp[j]+cost(j+1,i);
		while(en-sta+1>=2&&k(q[en],q[en-1])>k(i,q[en])) en--;
		q[++en]=i;
	}
	cout<<dp[n];
	return 0;	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值