洛谷P3807 lucas定理模板

本文详细介绍了Lucas定理及其在组合数学中的应用,包括如何通过递归计算组合数,避免大数运算中逆元存在的问题。通过具体算法实现,展示了如何高效地解决涉及大组合数的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lucas定理:

给出 n , m , p n,m,p n,m,p,其中 n ∈ [ 1 , 1 0 5 ] , m ∈ [ 1 , 1 0 5 ] , p ∈ [ 1 , 1 0 5 ] , p ∈ p r i m e n\in[1,10^5],m\in[1,10^5],p\in[1,10^5],p\in prime n[1,105],m[1,105],p[1,105],pprime
C n m   ≡ C n   m o d   p m   m o d   p C ⌊ n p ⌋ ⌊ m p ⌋   ( m o d   p ) C_{n}^m\ \equiv C_{n\ mod\ p}^{m\ mod\ p}C_{\lfloor \frac{n}{p} \rfloor}^{\lfloor \frac{m}{p} \rfloor}\ (mod\ p) Cnm Cn mod pm mod pCpnpm (mod p)
其中第一个组合数直接暴力计算,第二个组合数递归计算

一些解释:

为何不能直接计算阶乘计算?

阶乘计算需要逆元,不是任何情况下都存在逆元的,考虑解不定方程求逆元,这样的限制最少,即解方程
a x ≡ 1   ( m o d   p ) ax\equiv1\ (mod\ p) ax1 (mod p)
即解不定方程
a x − k p = 1 ax-kp=1 axkp=1
裴蜀定理,这个方程需要满足以下条件才会有解
g c d ( a , k ) = 1 gcd(a,k)=1 gcd(a,k)=1
可见并不是所有的 a , k a,k a,k都满足这个条件的。

平时能用逆元是因为模数太大, n n n不超过模数,这样无论如何都存在逆元 ( 1 ) (1) (1)

第一个组合数的计算方法:

此时 n   m o d   p < p , m   m o d   p < p n\ mod\ p<p,m\ mod\ p<p n mod p<p,m mod p<p,于是即转换为了上一点的 ( 1 ) (1) (1)这句话,就可以计算逆元来求解了

时间复杂度: O ( p + l o g n ) O(p+logn) O(p+logn)

#ifndef stdjudge
#include<bits/stdc++.h>
#endif
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<numeric>
#include<ctime>
#include<cmath>
#include<vector>
#include<bitset>
using namespace std;

using ll=long long;
const int N=1e5+5,inf=0x3fffffff;
const long long INF=0x3fffffffffffffff,mod=998244353;

ll qpow(ll a,ll b,ll p)
{
	ll ret=1,base=a;
	while(b)
	{
		if(b&1) ret=ret*base%p;
		base=base*base%p;
		b>>=1;
	}
	return ret;
}

ll inv(ll x,ll p){return qpow(x,p-2,p);}

ll C(ll n,ll m,ll p)
{
	if(n<m) return 0;
	ll ret1=1,ret2=1,ret3=1;
	for(int i=1;i<=n;i++)
	{
		ret1=ret1*i%p;
		if(i<=m) ret2=ret2*i%p;
		if(i<=n-m) ret3=ret3*i%p;
	}
	return ret1*inv(ret2,p)%p*inv(ret3,p)%p;
}

ll lucas(ll n,ll m,ll p)
{
	if(!n||!m) return 1;
	return C(n%p,m%p,p)*lucas(n/p,m/p,p)%p;
}

int main()
{
	#ifdef stdjudge
		freopen("in.txt","r",stdin);
	#endif
	int t; cin>>t;
	while(t--)
	{
		ll n,m,p; cin>>n>>m>>p;
		cout<<lucas(n+m,m,p)<<'\n';
	}
	return 0;
}
<think>嗯,用户想了解Lucas定理,涉及数学、计算机科学、组合数和取模运算。我需要先回忆一下Lucas定理的基本内容和应用场景。首先,Lucas定理是用来计算组合数取模的一个方法,特别是当模数是质数的时候。这个定理在组合数学和算法竞赛中应该比较常见,因为处理大数组合数取模的问题时,直接计算可能会非常耗时或者溢出,所以需要高效的算法。 根据用户提供的引用,特别是引用[3]提到数论是算法竞赛的重要部分,Lucas定理作为数论中的一个定理,可能在竞赛中用于解决组合数取模的问题。用户的问题涉及组合数和取模运算,所以需要详细说明定理的表述、证明思路以及实际应用方法。 首先,Lucas定理的具体内容是什么?我记得定理指出,对于质数p,将两个非负整数m和n表示为p进制展开,即m = m_k p^k + ... + m_0,n = n_k p^k + ... + n_0,那么组合数C(m, n) mod p等于各个对应位组合数C(m_i, n_i)的乘积再mod p。如果某一位的n_i > m_i,则整个组合数mod p为0。 接下来需要解释定理的数学表达式,用LaTeX写成独立公式。比如: $$ \binom{m}{n} \equiv \prod_{i=0}^k \binom{m_i}{n_i} \pmod{p} $$ 其中,m_i和n_i是m和n在p进制下的各位数字。这个表达式需要正确使用$$...$$格式,并且单独成段。 然后,定理的证明思路是怎样的?通常,证明会用到生成函数或者多项式展开,利用二项式定理在模p下的性质。例如,考虑多项式(1 + x)^m在模p下的展开,并分解为各个p进制位的乘积。这部分可能需要引用二项式定理Lucas的原始论文,但用户提供的引用中没有直接相关的,所以可能需要简要说明证明的大致步骤,而不过多深入细节。 应用场景方面,用户可能关心的是在算法竞赛中如何用Lucas定理快速计算组合数模质数的情况。例如,当需要计算C(n, k) mod p,其中p是质数,且n和k很大(比如1e18),这时候直接计算不可行,使用Lucas定理可以将问题分解为多个小规模的组合数计算,这些小组合数可以通过预计算阶乘和逆元来处理。 在步骤解释时,需要分步说明如何应用Lucas定理。例如: 1. 将n和k转换为p进制数。 2. 对每一位计算组合数C(n_i, k_i) mod p。 3. 将所有结果相乘再mod p得到最终结果。 可能还需要提到如何处理n_i < k_i的情况,这时候组合数为0,整个乘积也为0,因此直接返回0。 然后,给出一个具体的例子,比如计算C(12, 5) mod 3。将12和5转换为3进制,得到12=110_3,5=12_3。然后对应每一位的组合数:C(1,1)=1,C(1,2)=0(因为1<2),所以结果为1*0=0 mod 3。但这里可能需要注意位数对齐的问题,可能需要补前导零,比如5在3进制下是12,而12在3进制下是110,位数不同,所以需要将5补为012。然后每位组合数分别是C(1,0)=1,C(1,1)=1,C(0,2)=0,所以乘积是1*1*0=0。这个例子可能需要更详细地说明步骤,避免混淆。 接下来,可能需要给出代码示例,比如用递归或迭代的方式实现Lucas定理。代码部分需要用Python展示,并注意语法正确。例如,一个递归实现的Lucas函数,其中comb函数用于计算小规模的组合数mod p,可能需要预处理阶乘和逆元来提高效率。 此外,需要指出Lucas定理的限制,比如p必须是质数,如果p不是质数,则需要使用其他方法如中国剩余定理分解模数。这可能关联到引用[2]中提到的梅森素数判断中的模运算问题,但用户的问题中没有提到,所以可能不需要深入展开。 最后,生成相关问题需要考虑用户可能的后续疑问,比如Lucas定理的扩展应用、与其他定理(如中国剩余定理)的结合使用、处理非质数模数的方法、算法的时间复杂度以及优化技巧等。例如: 1. Lucas定理能否处理模数为合数的情况? 2. 如何结合中国剩余定理处理大数组合数取模? 3. 有没有比Lucas定理更高效的组合数取模算法? 4. Lucas定理的递归实现和迭代实现哪种更好? 需要确保这些问题与Lucas定理相关,并且能引导用户进一步深入学习。 总结,回答的结构应该包括定理的表述、证明思路、应用方法、实例演示、代码实现、应用场景以及相关问题。需要确保所有数学公式正确使用$...$或$$...$$,引用文献适当,并且回答符合用户要求的结构清晰和真实可靠。</think>### Lucas定理详解 Lucas定理是数论中用于高效计算组合数取模的重要工具,尤其适用于模数$p$为质数的情况。其核心思想是将大数分解为$p$进制各位的组合数乘积,从而降低计算复杂度[^3]。 #### 定理表述 设$p$为质数,$m,n$为非负整数,将其表示为$p$进制展开: $$ m = m_kp^k + m_{k-1}p^{k-1} + \dots + m_0 \\ n = n_kp^k + n_{k-1}p^{k-1} + \dots + n_0 $$ 则组合数满足: $$ \binom{m}{n} \equiv \prod_{i=0}^k \binom{m_i}{n_i} \pmod{p} $$ 若存在某位$n_i > m_i$,则$\binom{m}{n} \equiv 0 \pmod{p}$[^1]。 #### 证明思路 1. **多项式展开**:利用二项式定理展开$(1+x)^m$,在模$p$环境下分析系数 2. **生成函数分解**:将$(1+x)^m$分解为$p$进制各位的乘积形式 3. **系数对应**:通过比较系数得到组合数的分解关系 #### 应用步骤 以计算$\binom{12}{5} \mod 3$为例: 1. **转换进制**:$12=1\cdot3^2 + 1\cdot3^1 + 0\cdot3^0$,$5=0\cdot3^2 +1\cdot3^1 +2\cdot3^0$ 2. **逐位计算**: - $\binom{1}{0}=1$ - $\binom{1}{1}=1$ - $\binom{0}{2}=0$ 3. **结果相乘**:$1\times1\times0 \equiv 0 \mod 3$ #### 代码实现 ```python def comb(n, k, p): if k > n: return 0 # 预计算阶乘和逆元更高效 numerator = 1 for i in range(k): numerator = numerator * (n-i) % p denominator = 1 for i in range(1, k+1): denominator = denominator * i % p return numerator * pow(denominator, p-2, p) % p # 费马小定理求逆元 def lucas(n, k, p): if k == 0: return 1 return comb(n%p, k%p, p) * lucas(n//p, k//p, p) % p ``` #### 应用场景 - **算法竞赛**:处理$n,k$极大(如$10^{18}$)的组合数取模问题 - **密码学**:构造特定数学结构的加密算法 - **概率计算**:大样本空间下的离散概率计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值