洛谷P3807 lucas定理模板

Lucas定理:

给出 n , m , p n,m,p n,m,p,其中 n ∈ [ 1 , 1 0 5 ] , m ∈ [ 1 , 1 0 5 ] , p ∈ [ 1 , 1 0 5 ] , p ∈ p r i m e n\in[1,10^5],m\in[1,10^5],p\in[1,10^5],p\in prime n[1,105],m[1,105],p[1,105],pprime
C n m   ≡ C n   m o d   p m   m o d   p C ⌊ n p ⌋ ⌊ m p ⌋   ( m o d   p ) C_{n}^m\ \equiv C_{n\ mod\ p}^{m\ mod\ p}C_{\lfloor \frac{n}{p} \rfloor}^{\lfloor \frac{m}{p} \rfloor}\ (mod\ p) Cnm Cn mod pm mod pCpnpm (mod p)
其中第一个组合数直接暴力计算,第二个组合数递归计算

一些解释:

为何不能直接计算阶乘计算?

阶乘计算需要逆元,不是任何情况下都存在逆元的,考虑解不定方程求逆元,这样的限制最少,即解方程
a x ≡ 1   ( m o d   p ) ax\equiv1\ (mod\ p) ax1 (mod p)
即解不定方程
a x − k p = 1 ax-kp=1 axkp=1
裴蜀定理,这个方程需要满足以下条件才会有解
g c d ( a , k ) = 1 gcd(a,k)=1 gcd(a,k)=1
可见并不是所有的 a , k a,k a,k都满足这个条件的。

平时能用逆元是因为模数太大, n n n不超过模数,这样无论如何都存在逆元 ( 1 ) (1) (1)

第一个组合数的计算方法:

此时 n   m o d   p < p , m   m o d   p < p n\ mod\ p<p,m\ mod\ p<p n mod p<p,m mod p<p,于是即转换为了上一点的 ( 1 ) (1) (1)这句话,就可以计算逆元来求解了

时间复杂度: O ( p + l o g n ) O(p+logn) O(p+logn)

#ifndef stdjudge
#include<bits/stdc++.h>
#endif
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<numeric>
#include<ctime>
#include<cmath>
#include<vector>
#include<bitset>
using namespace std;

using ll=long long;
const int N=1e5+5,inf=0x3fffffff;
const long long INF=0x3fffffffffffffff,mod=998244353;

ll qpow(ll a,ll b,ll p)
{
	ll ret=1,base=a;
	while(b)
	{
		if(b&1) ret=ret*base%p;
		base=base*base%p;
		b>>=1;
	}
	return ret;
}

ll inv(ll x,ll p){return qpow(x,p-2,p);}

ll C(ll n,ll m,ll p)
{
	if(n<m) return 0;
	ll ret1=1,ret2=1,ret3=1;
	for(int i=1;i<=n;i++)
	{
		ret1=ret1*i%p;
		if(i<=m) ret2=ret2*i%p;
		if(i<=n-m) ret3=ret3*i%p;
	}
	return ret1*inv(ret2,p)%p*inv(ret3,p)%p;
}

ll lucas(ll n,ll m,ll p)
{
	if(!n||!m) return 1;
	return C(n%p,m%p,p)*lucas(n/p,m/p,p)%p;
}

int main()
{
	#ifdef stdjudge
		freopen("in.txt","r",stdin);
	#endif
	int t; cin>>t;
	while(t--)
	{
		ll n,m,p; cin>>n>>m>>p;
		cout<<lucas(n+m,m,p)<<'\n';
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值