hdu 1978 How many ways

Problem Description

这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m)。游戏的规则描述如下:
1.机器人一开始在棋盘的起始点并有起始点所标有的能量。
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。
3.机器人不能在原地停留。
4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。

如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4)

点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。
我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。

Input

第一行输入一个整数T,表示数据的组数。
对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。

Output

对于每一组数据输出方式总数对10000取模的结果.

Sample Input

1
6 6
4 5 6 6 4 3
2 2 3 1 7 2
1 1 4 6 2 7
5 8 4 3 9 5
7 6 6 2 1 5
3 1 1 3 7 2

Sample Output

3948
 
 
分析:用dp[i][j]记录从位置(i,j)到位置(n,m)的路径数,map[i][j]记录位置(i,j)的能量
状态转移方程为:dp[i+k][j+l]+=dp[i][j](k+l<=map[i][j]&&i+k<=n&&j+l<=m&&k+l!=0)
 
 
代码:
#include<stdio.h>
#include<string.h>
int map[301][301];
int dp[301][301];
int main()
{
    int n,m,i,j,k,l,t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        for(i=1;i<=n;i++)
            for(j=1;j<=m;j++)
                scanf("%d",&map[i][j]);
        memset(dp,0,sizeof(dp));
        dp[1][1]=1;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=m;j++)
            {
                if(dp[i][j]==0)
                   continue;
                for(k=0;k<=map[i][j];k++)
                {
                    for(l=0;k+l<=map[i][j];l++)
                    {
                        if(k+l==0)
                             continue;
                        dp[i+k][j+l]+=dp[i][j];
                        dp[i+k][j+l]%=10000;
                    }
                }
            }
        }
        printf("%d\n",dp[n][m]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值