为什么gpt模型输入的token最大数量被限制在几万,是有技术问题吗?

既是技术问题,也是算力问题。


算力问题很容易理解,GPT4大概率还是用Transformer模型。Transformer如果经过各种Linear技术的优化(如Sparse),那么Scaling Law难以保证;如果保持原样,那么复杂度是二次的,序列一长,训练成本和推理成本都比较难顶。


技术问题则主要是Transformer的长度外推性并不好。如果你想处理1000长度的文本,那么预训练阶段就拿1000长度的文本去训,那自然没有问题,但如果你只拿500长度的文本去预训练,那么得到的模型通常无法很好地处理1000长度的文本,尤其是生成模型场景。

也就是说,短文本训练的模型,通常无法直接处理长文本,这就是长度外推问题,这个问题不只是Transformer有,RNN甚至CNN都会有。注意这里的长短是相对的,如果你想处理10000长度的文本,那么5000长度都算短文本了。

已经有一些工作试图解决这个问题,比如ALIBI、KERPLE、XPOS等,可以参考 Transformer升级之路:7、长度外推性与局部注意力 - 科学空间|Scientific Spaces ,但是这类工作都是基于局部化Attention思想强行赋予平移不变性,无法做到全局依赖,在LLM场景下意义不大。最近笔者也进行了一些尝试,初步看下述方案能保留全局依赖:

Transformer升级之路:9、一种全局长度外推的新思路 - 科学空间|Scientific Spaces​kexue.fm/archives/9603

此外,还有一个名为Parallel Context Window的方法值得一提,它是一种事后修改方案,能够增强训练好的模型的处理长度,并且理论上能保持全局依赖:

Parallel Context Windows Improve In-Context Learning of Large Language Models​arxiv.org/abs/2212.10947​编辑


至于Claude100k token或者GPT4的32k token是怎么做的,这个没有任何技术细节披露,没法猜。个人感觉100k其实还在能想象的范围内,硬训也是也可能的。说到这里,顺便提一件事:OpenAI在2019年的论文 Generating Long Sequences with Sparse Transformers 就已经做到了一万多token的自回归生成,并且它的Sparsity Pattern跟Parallel Context Learning很相似。

也就是说,人家19年的自回归生成长度就能够突破10k(并且还预见了接近Parallel Context Learning的方案),现在32k就是“洒洒水”了

<think>嗯,用户想知道大模型数量达到万亿是什么概念。首先,我需要理解参数在神经网络中的角色。参数就是模型在训练过程中调整的权重和偏置,用来学习数据中的模式。参数越多,模型理论上能捕捉更复杂的模式,但也会带来计算和存储的挑战。 接下来,万亿参数具体有多大呢?比如,GPT-3有1750亿参数,已经很大了,万亿是它的5.7倍左右。这样的规模需要更庞大的计算资源,比如更多的GPU或TPU,训练时间也更长。同时,存储这些参数需要大量内存,可能达到几个TB级别,这对硬件要求极高。 然后要考虑训练成本。训练万亿模型可能需要数百万美元的电费和云计算资源,普通公司难以承受。另外,数据需求也更大,需要高质量、多样化的数据集,否则容易过拟合。还有,推理延迟的问题,实时应用可能会受影响。 不过,万亿参数模型的能力可能更强,处理复杂任务更得心应手,比如更长的上下文理解、多模态处理等。但也要注意边际效应,参数增长不一定线性提升性能,可能遇到瓶颈。 最后,用户可能关心这样的模型实际应用中的限制和挑战,比如部署成本、能耗、环境影响等。需要全面解释,让用户明白虽然技术先进,但实际应用还有很多权衡要考虑。</think>大模型的“参数量”指其内部可调整的权重(weights)和偏置(biases)的总数。当参数量达到**万亿(1 trillion,即$10^{12}$)**级别时,其复杂性和资源需求将呈现量级跃升。以下从核心概念、对比案例、实现挑战和实际意义四个层面逐步解析: --- ### 一、参数的本质:神经网络如何“记忆” - **参数的作用** 每个参数代表神经网络中神经元之间的连接强度。例如: $$ y = w_1x_1 + w_2x_2 + b $$ 其中$w_1, w_2$是权重参数,$b$是偏置参数。模型通过调整这些参数学习数据规律。 - **参数与能力的关联** 参数越多,模型理论上能存储更多信息,捕捉更细粒度的特征。例如: - 千亿参数($10^{11}$)可覆盖主流语言的语法和常识 - 万亿参数($10^{12}$)可能进一步编码跨领域知识和长程逻辑 --- ### 二、直观对比:从日常事物理解规模 1. **存储需求** 假设每个参数用16位浮点数(2字节)存储: $$ 1\ \text{万亿参数} \times 2\ \text{字节} = 2\ \text{TB} $$ 相当于**400张DVD光盘**的存储容量。 2. **计算量对比** - GPT-3(1750亿参数):单次推理需约$3.14 \times 10^{23}$次浮点运算 - 万亿参数模型:计算量约为GPT-3的**5.7倍**,接近**$1.8 \times 10^{24}$次运算** --- ### 三、实现挑战:技术瓶颈与成本 #### (1)硬件限制 - **显存墙问题** 单张NVIDIA H100显卡(80GB显存)最多加载约400亿参数(16位精度)。万亿参数需**25张H100协同工作**,且需复杂的内存优化技术。 #### (2)训练成本 - **能耗估算** 训练万亿模型约需$10^{25}$ FLOPs。假设使用A100集群(312 TFLOPS/W): $$ \frac{10^{25}\ \text{FLOPs}}{312 \times 10^{12}\ \text{FLOPs/J}} \approx 3.2 \times 10^{10}\ \text{焦耳} \approx 8900\ \text{兆瓦时} $$ 相当于**一个中型核电站运行1小时的发电量**。 --- ### 四、实际意义:能力提升与边际效应 #### 优势领域 - **长上下文理解** 可处理超过100万token的文本(如整本《战争与和平》约58万词) - **多模态统一建模** 在单模型中融合文本、图像、音频的联合表征 - **逻辑推理跃迁** 可能突破当前大模型在数学证明、代码调试等任务中的瓶颈 #### 性能瓶颈 - **收益递减规律** 当参数超过千亿后,单位参数带来的性能增益显著下降(参见Chinchilla定律) $$ L(N,D) = E + \frac{A}{N^\alpha} + \frac{B}{D^\beta} $$ 其中$N$为参数量,$D$为数据量,$\alpha \approx 0.34$,$\beta \approx 0.28$ --- ### 五、典型案例 1. **Google的Switch-Transformer** 首个公开的万亿级模型(1.6T参数),采用稀疏激活机制: - 每层仅激活约7%的专家模块 - 相比密集模型节省2/3计算量 2. **华为盘古α** 中文领域首个千亿模型,扩展到万亿需解决: - 分布式训练通信开销(参数服务器带宽需求超400Gbps) - 低精度量化误差累积(8位量化可能损失0.3%准确率) --- ### 总结:万亿参数的双刃剑 - **技术突破**:推动多模态理解、复杂推理等前沿领域 - **落地障碍**:需突破内存墙、能耗墙、通信延迟等限制 - **未来趋势**:模型架构创新(如MoE、联邦学习)可能比单纯增加参数更关键
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值