为什么gpt模型输入的token最大数量被限制在几万,是有技术问题吗?

既是技术问题,也是算力问题。


算力问题很容易理解,GPT4大概率还是用Transformer模型。Transformer如果经过各种Linear技术的优化(如Sparse),那么Scaling Law难以保证;如果保持原样,那么复杂度是二次的,序列一长,训练成本和推理成本都比较难顶。


技术问题则主要是Transformer的长度外推性并不好。如果你想处理1000长度的文本,那么预训练阶段就拿1000长度的文本去训,那自然没有问题,但如果你只拿500长度的文本去预训练,那么得到的模型通常无法很好地处理1000长度的文本,尤其是生成模型场景。

也就是说,短文本训练的模型,通常无法直接处理长文本,这就是长度外推问题,这个问题不只是Transformer有,RNN甚至CNN都会有。注意这里的长短是相对的,如果你想处理10000长度的文本,那么5000长度都算短文本了。

已经有一些工作试图解决这个问题,比如ALIBI、KERPLE、XPOS等,可以参考 Transformer升级之路:7、长度外推性与局部注意力 - 科学空间|Scientific Spaces ,但是这类工作都是基于局部化Attention思想强行赋予平移不变性,无法做到全局依赖,在LLM场景下意义不大。最近笔者也进行了一些尝试,初步看下述方案能保留全局依赖:

Transformer升级之路:9、一种全局长度外推的新思路 - 科学空间|Scientific Spaces​kexue.fm/archives/9603

此外,还有一个名为Parallel Context Window的方法值得一提,它是一种事后修改方案,能够增强训练好的模型的处理长度,并且理论上能保持全局依赖:

Parallel Context Windows Improve In-Context Learning of Large Language Models​arxiv.org/abs/2212.10947​编辑


至于Claude100k token或者GPT4的32k token是怎么做的,这个没有任何技术细节披露,没法猜。个人感觉100k其实还在能想象的范围内,硬训也是也可能的。说到这里,顺便提一件事:OpenAI在2019年的论文 Generating Long Sequences with Sparse Transformers 就已经做到了一万多token的自回归生成,并且它的Sparsity Pattern跟Parallel Context Learning很相似。

也就是说,人家19年的自回归生成长度就能够突破10k(并且还预见了接近Parallel Context Learning的方案),现在32k就是“洒洒水”了

<think>好的,我需要解释“70B模型”是什么意思。首先,用户可能是在机器学习和人工智能领域遇到这个术语,特别是在自然语言处理(NLP)中。70B中的“B”通常代表“Billion”(十亿),所以70B模型应该是指拥有700亿参数的模型。参数数量是衡量模型复杂度和能力的重要指标,参数越多,模型通常能够处理更复杂的任务,但同时也需要更多的计算资源和存储空间。 接下来,我需要确认这个术语的具体应用场景。例如,像GPT-3就有175B参数的版本,而较小的版本如GPT-2有1.5B参数。因此,70B模型可能是指某个中等规模的大型语言模型,介于较小的模型(如几亿参数)和超大规模模型(如千亿参数)之间。需要提到这类模型的应用,比如文本生成、翻译、问答系统等。 另外,用户可能想知道70B模型与其他规模模型的区别,比如训练时间、硬件需求、性能表现等。需要说明参数数量如何影响这些方面。例如,更大的模型通常需要更多的数据和计算资源进行训练,推理时的延迟也可能更高,但准确性和处理复杂任务的能力更强。 还要考虑是否存在具体的70B模型实例。例如,是否有哪些知名的模型采用了70B参数规模?如果找不到具体的例子,可能需要解释一般情况下的70B模型特征,而不是特定某个模型。 此外,可能需要涉及模型压缩和优化技术,因为处理如此大的模型在实际应用中可能会遇到挑战,比如分布式训练、模型并行、量化等。这些技术帮助在资源受限的情况下部署大型模型。 最后,需要以简明扼要的方式组织信息,确保用户能够理解70B模型的基本概念、应用、优缺点以及相关技术挑战。同时要避免使用过于专业的术语,保持解释的通俗易懂。</think>"70B模型"中的"B"代表**Billion(十亿)**,即该模型拥有**约700亿个参数**。这类模型属于**大规模语言模型(Large Language Model, LLM)**,主要用于自然语言处理任务。以下是详细说明: --- ### 一、核心概念 1. **参数规模**:700亿参数属于"超大模型"范畴(介于130亿参数LLaMA和1750亿参数GPT-3之间) 2. **典型架构**:基于Transformer结构,采用自注意力机制 3. **训练成本**:约需数千张A100 GPU训练数周 $$ \text{训练成本} \propto (\text{参数量})^{1.5} \times \text{数据量} $$ --- ### 二、技术特点 | 特性 | 70B模型 | 较小模型(如7B) | |---------------------|----------------------------|---------------------------| | 上下文理解能力 | ▲▲▲ 可处理复杂逻辑推理 | ▲ 适合基础问答 | | 多任务泛化性 | 支持零样本学习(Zero-shot) | 需要微调(Fine-tuning) | | 硬件需求 | 需8×A100 GPU推理 | 单卡可运行 | | 延迟 | 500-1000ms/Token | 50-100ms/Token | --- ### 三、典型应用 1. **复杂对话系统**:医疗咨询、法律文书分析 2. **知识密集型任务**:论文摘要生成、代码补全 3. **多模态融合**:图文联合理解(需配合视觉模型) --- ### 四、代表模型 1. **LLaMA-2-70B**(Meta开源) - 训练数据:2万亿Token - 支持上下文长度:4096 Token 2. **DeepSeek-R1-70B**(深度求索) - 中文优化版,数学推理能力突出 --- ### 五、挑战与趋势 1. **挑战**: - 显存占用:FP16精度需140GB显存 - 能耗:单次推理耗电≈0.3度 2. **优化方向**: - 模型量化(4bit量化可压缩至35GB) - 混合专家系统(MoE):如Mixtral 8x70B --- #### 注: 当前主流趋势是"适度规模化",70B规模在效果与成本间取得较好平衡,被视作企业级应用的"黄金尺寸"。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值