RAG与SFT技术简介

1. 检索增强生成(RAG)

1.1 RAG技术的基本概念

RAG是一种结合了检索(Retrieval)和生成(Generation)能力的技术。其核心思想是,通过先从一个庞大的数据库中检索相关信息,然后利用生成模型基于这些信息生成答案。这种方法可以提高生成结果的准确性和相关性。

1.2 RAG的工作流程

1.2.1检索阶段

系统首先接收到一个查询(例如一个问题)。
检索模型(通常是一个预训练的BERT模型)从一个大型数据库中找到与查询最相关的文档或片段。

1.2.2 生成阶段

生成模型(通常是GPT-3或其他大型语言模型)接收检索到的文档片段。
生成模型基于这些片段生成最终的回答。

1.3 RAG的优势

增强知识覆盖:通过结合外部知识库,RAG能回答基于广泛知识的问题。
提高生成准确性:利用相关文档作为背景,生成的回答更加精确和有依据。

1.4 应用场景

问答系统:例如,医疗领域的患者问答系统,可以提供准确的医疗信息。
客户支持:自动化客户服务,通过检索数据库回答用户问题。

2. 指令微调(SFT)

2.1 SFT技术的基本概念

指令微调是一种通过在预训练模型上进行额外的微调,使模型能够更好地理解和执行自然语言指令的方法。通过这个过程,模型可以更准确地响应具体的指令,从而提高其实用性和用户体验。

2.2 SFT的工作流程

2.2.1 预训练模型

  • 使用大规模文本数据训练的通用语言模型(如GPT-3)。

2.2.2 微调阶段

  • 利用特定领域或任务的数据,对预训练模型进行进一步训练。
  • 这个过程需要使用高质量的指令-响应对(instruction-response pairs),让模型学习如何执行具体的任务。

2.3 SFT的优势

  • 定制化:可以针对特定任务进行微调,使模型在特定领域表现更佳。
  • 提高准确性:通过指令微调,模型可以更准确地理解和执行用户的指令。

2.4 应用场景

  • 智能助手:如Siri、Alexa,通过指令微调,更好地理解和执行用户命令。
  • 特定任务自动化:如法律文本分析、金融报告生成,通过微调模型,可以提高特定任务的执行效果。
### RAG 技术大型语言模型 (LLM) 的融合应用 #### 基础概念介绍 RAG(Retrieval-Augmented Generation)是一种结合检索增强生成的方法,旨在提升自然语言处理任务的效果。通过引入外部知识库中的信息来辅助生成过程,这种方法不仅提高了生成内容的质量,还增强了系统的灵活性和适应能力。 #### 实现方式概述 为了实现这一目标,通常采用如下架构: 1. **数据预处理阶段** 数据集被分割成多个片段并存储于索引结构中以便快速访问。这些片段可能来自文档集合或其他形式的知识源[^1]。 2. **查询理解扩展** 用户输入经过初步解析后形成向量表示,用于后续相似度计算;同时借助 LLM 对原始请求进行语义扩充,增加同义词或关联词汇以扩大搜索范围[^2]。 3. **多轮次检索机制** 利用上述特征向量,在预先构建好的索引内执行多次迭代式的近似最近邻查找操作,逐步缩小候选答案空间直至收敛至最优解附近。 4. **结果合成优化** 收集到的相关片段经由另一实例化的 LLM 进行二次加工——即根据具体应用场景调整语气风格、补充背景资料等细节部分,最终产出连贯完整的回复文本。 ```python from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained( "facebook/dpr-question_encoder-single-nq-base", index_name="exact", use_dummy_dataset=True, ) model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever) input_dict = tokenizer.prepare_seq2seq_batch(contexts=["What is the capital of France?"], return_tensors="pt") generated_ids = model.generate(input_ids=input_dict["input_ids"]) print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)) ``` 此代码展示了如何加载预训练的 RAG 模型,并针对给定问题获取最佳匹配的回答。这里选择了 Facebook 开发的一套工具链作为示范案例,实际部署时可根据需求替换相应组件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

steptoward

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值