使用tensorflow自带model训练SSD并且在手机上运行

这篇博客详细介绍了如何使用TensorFlow训练SSD模型,从代码下载、环境配置到训练数据准备,接着将模型转换为tflite格式,并在Android应用中成功运行进行物体检测。过程包括xml数据标注、tfrecord转换、config文件创建、训练、frozen pb和tflite文件生成,最后在Android中集成并编译apk。
摘要由CSDN通过智能技术生成

整个流程稍微有点长,但是如果走通后再来新的任务就很简单了。大概分为以下几个步骤:

  1. 训练SSD
  2. 转tflite
  3. 在android应用中运行

训练SSD

1.代码下载

https://github.com/tensorflow/models.git

我们会使用ROOT/research/object_detection下的代码来训练SSD。

2.环境配置

除了tensorflow外还需要安装下面这些模块

pip install --user Cython
pip install --user contextlib2
pip install --user pillow
pip install --user lxml
pip install --user jupyter
pip install --user matplotlib

也可以后面使用的时候根据错误提示,缺了什么再安装对应的模块。

另外还需要配置protoc,下载地址,下载后解压放在ROOT/research目录下,将文件夹的名字更改为protoc,然后运行

./protoc/bin/protoc object_detection/protos/*.proto --python_out=.

运行之后在ROOT/research/object_detection/protos/下会生成很多python文件,后面代码中会使用这些python文件。

为了验证我们环境或者python文件是否正确,可以运行下面的命令

export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

python object_detection/builders/model_builder_test.py

如果出现下面的结果就表示准备好了

......................
----------------------------------------------------------------------
Ran 22 tests in 0.191s

OK

3.准备训练数据

标记数据

使用labelImg工具(下载地址)对数据进行标记

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值