论文笔记:IRNet: Instance Relation Network for Overlapping Cervical Cell Segmentation

该论文介绍了IRNet,一种针对宫颈细胞重叠分割问题的网络结构,采用Instance Relation Module和Sparsity Regularized Duplicate Removal Module增强候选选择和语义一致性。IRNet基于Mask-RCNN,并在Medical Image Computing and Computer Assisted Intervention (MICCAI) 2019上发表,展示了医疗图像分析与自然图像分析的不同挑战。
摘要由CSDN通过智能技术生成

刘老师推荐的论文,与cervical cancer相关,也适当地看一下别人的做法。

背景和宫颈癌相关,作者从细胞间重叠多,其他混杂的物体(非需要被检测的类)入手。

method

为了增强candidate selection 和 semantic consistency ,作者使用了Duplicate Removal Module (DRM) and Instance Relation Module (IRM) 。

整体的IRnet以Mask-RCNN为baseline,结构图:
在这里插入图片描述

Instance Relation Module

在这里插入图片描述
图中这样一个IRM接在mask子网之后,用于提取其他cell的contextual information增强分割性能。可以看到,这样一个结构直接套用了self-attention。
对于每个instance p,考虑实例间相关性之后的公式如下:
在这里插入图片描述
self-attention:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值