20060602-Cell segmentation

原文:http://blogs.mathworks.com/steve/2006/06/02/cell-segmentation/

Note: you can download the functions imcreit and imoverlay from MATLAB Central.

I = imread('http://blogs.mathworks.com/images/steve/60/nuclei.png');
I_cropped = I(400:900, 465:965);
imshow(I_cropped)
imcredit('Image courtesy of Dr. Ramiro Massol')
Strictly speaking, contrast adjustment isn't usually necessary for segmentation, but it can help the algorithm developer see and understand the image data better. This is a fairly low-contrast image, so I thought it might help. You can adjust the display contrast interactively with imtool, or you can use an automatic method such as adapthisteq. adapthisteq implements a technique called contrast-limited adaptive histogram equalization, or CLAHE. (I always thought "CLAHE" sounded like it must be some Klingon delicacy.)
I_eq = adapthisteq(I_cropped);
imshow(I_eq)
So what happens if we just apply a threshold now?
bw = im2bw(I_eq, graythresh(I_eq));
imshow(bw)
Let's clean that up and then overlay the perimeter on the original image.
bw2 = imfill(bw,'holes');
bw3 = imopen(bw2, ones(5,5));
bw4 = bwareaopen(bw3, 40);
bw4_perim = bwperim(bw4);
overlay1 = imoverlay(I_eq, bw4_perim, [.3 1 .3]);
imshow(overlay1)
Now, I'm not familiar with these cell images, so I don't know exactly what I'm looking at. I assume some of these blobs need more help to be separated properly. One possible approach is called marker-based watershed segmentation.

Let's try to use the bright objects, which I assume are nuclei. The extended maxima operator can be used to identify groups of pixels that are significantly higher than their immediate surrounding.

mask_em = imextendedmax(I_eq, 30);
imshow(mask_em)
Let's clean that up and then overlay it.

mask_em = imclose(mask_em, ones(5,5));
mask_em = imfill(mask_em, 'holes');
mask_em = bwareaopen(mask_em, 40);
overlay2 = imoverlay(I_eq, bw4_perim | mask_em, [.3 1 .3]);
imshow(overlay2)
Next step: complement the image so that the peaks become valleys. We do this because we are about to apply the watershed transform, which identifies low points, not high points.
I_eq_c = imcomplement(I_eq);
Next: modify the image so that the background pixels and the extended maxima pixels are forced to be the only local minima in the image.
I_mod = imimposemin(I_eq_c, ~bw4 | mask_em);
Now compute the watershed transform.
L = watershed(I_mod);
imshow(label2rgb(L))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值