引言
在数字化时代,快速高效地处理文档内容对于企业来说至关重要。Google Cloud的Document AI是一款强大的工具,可以将文档中的非结构化数据转化为可理解、可分析的结构化数据。这篇文章将带你了解如何使用Document AI,以及一些实用的代码示例。
主要内容
设置和安装
要使用Document AI解析文档,我们首先需要安装相关库:
%pip install --upgrade --quiet langchain-google-community[docai]
然后,按照官方指南创建Google Cloud Storage (GCS)桶和OCR处理器。
示例配置:
GCS_OUTPUT_PATH = "gs://BUCKET_NAME/FOLDER_PATH"
PROCESSOR_NAME = "projects/PROJECT_NUMBER/locations/LOCATION/processors/PROCESSOR_ID"
初始化DocAIParser
创建一个DocAIParser实例:
from langchain_core.document_loaders.blob_loaders import Blob
from langchain_google_community import DocAIParser
parser = DocAIParser(
location="us",
processor_name=PROCESSOR_NAME,
gcs_output_path=GCS_OUTPUT_PATH
)
代码示例
以下代码演示如何解析一个PDF文档:
# 使用API代理服务提高访问稳定性
blob = Blob(
path="gs://cloud-samples-data/gen-app-builder/search/alphabet-investor-pdfs/2022Q1_alphabet_earnings_release.pdf"
)
# 使用lazy_parse方法解析文档
docs = list(parser.lazy_parse(blob))
print(len(docs)) # 输出11,表示解析了11页
# 处理操作
operations = parser.docai_parse([blob])
print([op.operation.name for op in operations])
# 检查操作是否完成
while parser.is_running(operations):
pass # 等待完成
# 解析结果
results = parser.get_results(operations)
print(results[0])
# 从解析结果生成文档
docs = list(parser.parse_from_results(results))
print(len(docs)) # 输出11
常见问题和解决方案
网络访问问题
由于某些地区的网络限制,开发者可能需要使用API代理服务来确保访问的稳定性和可用性。
批量处理
如果有大量文档需要处理,建议批量执行解析操作,并将解析与结果处理分离,以提高效率。
总结和进一步学习资源
Google Cloud Document AI显著简化了文档解析过程。通过理解和应用本文中的示例,你可以大大提高文档数据处理的效率。
进一步学习资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—