如何利用最大边际相关性(MMR)选择示例:优化AI模型的多样性和相似性

# 如何利用最大边际相关性(MMR)选择示例:优化AI模型的多样性和相似性

## 引言

在构建AI模型时,选择合适的示例至关重要。最大边际相关性(MMR)是一种策略,用于在提高输入相似性的同时优化示例的多样性。本文将介绍如何使用MMR进行示例选择,并提供代码示例帮助你实现这一过程。

## 主要内容

### 什么是最大边际相关性(MMR)?

MMR是一种示例选择策略,通过结合输入相似性和结果多样性来选择示例。该方法通过计算输入示例与可用示例的余弦相似度,并迭代选择那些最相似且与已选择示例不同的样本。

### 实现MMR示例选择器

以下是如何使用`langchain`库中的`MaxMarginalRelevanceExampleSelector`进行MMR示例选择。

#### 必要库和类

- **FAISS**: 用于存储和搜索向量化的示例。
- **MaxMarginalRelevanceExampleSelector**: 实现MMR策略的示例选择器。
- **OpenAIEmbeddings**: 用于生成示例的嵌入。
- **FewShotPromptTemplate**: 用于格式化和展示最终的提示。

```python
from langchain_community.vectorstores import FAISS
from langchain_core.example_selectors import (
    MaxMarginalRelevanceExampleSelector,
    SemanticSimilarityExampleSelector,
)
from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate
from langchain_openai import OpenAIEmbeddings

# 示例任务
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值