# 如何利用最大边际相关性(MMR)选择示例:优化AI模型的多样性和相似性
## 引言
在构建AI模型时,选择合适的示例至关重要。最大边际相关性(MMR)是一种策略,用于在提高输入相似性的同时优化示例的多样性。本文将介绍如何使用MMR进行示例选择,并提供代码示例帮助你实现这一过程。
## 主要内容
### 什么是最大边际相关性(MMR)?
MMR是一种示例选择策略,通过结合输入相似性和结果多样性来选择示例。该方法通过计算输入示例与可用示例的余弦相似度,并迭代选择那些最相似且与已选择示例不同的样本。
### 实现MMR示例选择器
以下是如何使用`langchain`库中的`MaxMarginalRelevanceExampleSelector`进行MMR示例选择。
#### 必要库和类
- **FAISS**: 用于存储和搜索向量化的示例。
- **MaxMarginalRelevanceExampleSelector**: 实现MMR策略的示例选择器。
- **OpenAIEmbeddings**: 用于生成示例的嵌入。
- **FewShotPromptTemplate**: 用于格式化和展示最终的提示。
```python
from langchain_community.vectorstores import FAISS
from langchain_core.example_selectors import (
MaxMarginalRelevanceExampleSelector,
SemanticSimilarityExampleSelector,
)
from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate
from langchain_openai import OpenAIEmbeddings
# 示例任务
如何利用最大边际相关性(MMR)选择示例:优化AI模型的多样性和相似性
最新推荐文章于 2025-04-28 18:22:34 发布