【主题建模】一种基于深度学习的主题建模方法:BERTopic(理论篇)

BERTopic 是一种结合了预训练语言模型和降维技术的主题建模方法,通过嵌入、降维、聚类等步骤实现主题的发现。本文介绍了其基本原理,包括文档嵌入、降维(默认使用UMAP)、基于密度的聚类(HDBSCAN)以及词袋表示和主题表示的构建,旨在帮助读者理解如何利用 BERTopic 进行主题建模。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本系列包含:


在我的博客中已经写了很多关于 主题建模 的内容,当你准备了解 BERTopic 时,默认你已经知道了 LSApLSANFMLDA 等传统的主题建模方法。关于主题建模的前置知识我在这里不做赘述,感兴趣的同学可以看看我前几篇博客。学习 BERTopic 需要一定的机器学习基础,让我们一起开始吧!

1.总体概述

利用 BERTopic 进行主题建模可按照以下五个步骤进行:嵌入Embeddings)、降维Dimensionality Reduction)、聚类

### BERTopic 使用指南 BERTopic一种用于主题建模的先进工具,它利用 Transformer 嵌入技术提取语义特征并结合聚类算法生成高质量的主题。以下是关于其安装和使用的关键信息。 #### 安装过程 为了成功安装 BERTopic,需确保环境已配置好 Python 和必要的依赖库。可以通过 pip 工具轻松完成安装: ```bash pip install bertopic ``` 此外,还需要额外安装一些支持包以实现完整的功能集,例如 `sentence-transformers` 提供的嵌入器和支持可视化操作的 `umap-learn` 等[^2]。 #### 初始化与参数说明 当创建一个 BERTopic 实例时,可以传入多个参数来自定义行为。这些参数包括但不限于以下几项: - **embedder**: 指定文本嵌入模型,通常推荐使用 Sentence Transformers 中预训练好的模型。 - **vectorizer_model**: 文本向量化方式的选择,默认采用 TF-IDF 方法。 - **ctfidf**: 启用改进版的 TF-IDF 加权机制提升主题质量。 - **calculate_probabilities**: 是否计算文档属于各主题的概率分布。 - **update_steps**: 控制在迭代过程中更新频率。 - **verbose**: 设置为 True 可查看更详细的执行日志以便调试[^4]。 初始化示例代码如下所示: ```python from bertopic import BERTopic from sklearn.feature_extraction.text import CountVectorizer # 自定义停用词表 custom_stopwords = ["example", "another"] # 配置 vectorizer 参数 vectorizer_model = CountVectorizer(stop_words=custom_stopwords) # 创建 BERTopic 对象 topic_model = BERTopic( embedder="all-MiniLM-L6-v2", vectorizer_model=vectorizer_model, ctfidf=True, calculate_probabilities=True, verbose=True ) ``` #### 数据处理与应用案例 实际运用中,先加载待分析的数据集并对其中的文字部分做初步清理工作,比如去除噪声字符、分句等。接着调用 fit_transform 函数即可获得对应于每条记录的主题标签及其概率值列表。 下面展示了一个基于护肤品评论的情感分类场景中的具体实践步骤[^5]: ```python import pandas as pd # 导入数据文件 df = pd.read_csv('reviews_skintific_5xceramide - Copy.csv', encoding="ISO-8859-1") # 分离正负两类情感子集 df_neg = df[df['Sentiment'] == 'negative'] df_pos = df[df['Sentiment'] == 'positive'] # 获取负面评价作为输入样本集合 documents = df_neg["Review"].tolist() # 执行主题挖掘流程 topics, probs = topic_model.fit_transform(documents) ``` 通过以上介绍可以看出,无论是新手还是有经验的研究人员都能方便快捷地上手该框架来进行复杂自然语言处理任务下的主题探索活动。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G皮T

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值