本系列包含: 主题建模:BERTopic(理论篇) 主题建模:BERTopic(实战篇) 一种基于深度学习的主题建模方法:BERTopic(理论篇) 1.总体概述 2.代码示例 3.步骤详解 3.1 文档嵌入(Embed documents) 3.2 降维(Dimensionality reduction) 3.3 聚类(Cluster Documents) 3.4 词袋表示(Bag-of-words) 3.5 主题表示(Topic representation) 3.6 (可选)最大边际相关性(Maximal Marginal Relevance) 在我的博客中已经写了很多关于 主题建模 的内容,当你准备了解 BERTopic 时,默认你已经知道了 LSA、pLSA、NFM、LDA 等传统的主题建模方法。关于主题建模的前置知识我在这里不做赘述,感兴趣的同学可以看看我前几篇博客。学习 BERTopic 需要一定的机器学习基础,让我们一起开始吧! 1.总体概述 利用 BERTopic 进行主题建模可按照以下五个步骤进行:嵌入(Embeddings)、降维(Dimensionality Reduction)、聚类