使用最大边际相关性(MMR)选择示例:提高AI模型的多样性和相关性
引言
在机器学习和自然语言处理领域,选择合适的训练示例对模型性能至关重要。最大边际相关性(Maximal Marginal Relevance, MMR)是一种优秀的示例选择方法,它不仅考虑了示例与输入的相关性,还注重保持所选示例之间的多样性。本文将深入探讨如何使用MMR来选择示例,以提高AI模型的性能和泛化能力。
什么是最大边际相关性(MMR)?
最大边际相关性是一种在信息检索和自然语言处理中广泛使用的算法。它的核心思想是在选择相关项目的同时,也要考虑已选项目之间的多样性。在示例选择的context中,MMR算法会:
- 找出与输入最相似的示例
- 在添加新示例时,考虑它们与已选示例的不同程度
- 通过平衡相关性和多样性,优化最终选择的示例集
使用LangChain实现MMR示例选择
LangChain提供了MaxMarginalRelevanceExampleSelector
类,使我们能够轻松实现MMR示例选择。下面我们将通过一个详细的代码示例来说明如何使用它。
代码示例
from langchain_community.vectorstores import FAISS
from langchain_core.example_selectors import (
MaxMarginalRelevanceExampleSelector,
SemanticSimilarityExampleSelector,
)
from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate
from langchain_openai import OpenAIEmbeddings
# 定义示例模板
example_prompt = PromptTemplate(
input_variables=["input", "output"],
template="输入: