[利用Langchain轻松上手Google生成AI:从安装到应用示例指南]

引言

在当今的技术世界中,生成式AI正迅速崛起为一个重要领域。而Google生成AI(Google Generative AI)则是这个领域的一颗璀璨明星。本文旨在引导读者如何使用Langchain库与Google生成AI进行集成,为您的应用程序增添强大的人工智能能力。

主要内容

安装与设置

在我们开始使用Google生成AI之前,首先需要进行一些设置。您需要安装langchain-google-genai Python包,并生成一个Google API密钥。

%pip install --upgrade --quiet langchain-google-genai

安装完成后,您可以通过以下代码初始化Google生成AI客户端:

from langchain_google_genai import GoogleGenerativeAI
from getpass import getpass

api_key = getpass("Enter your Google API key: &#
<think>好的,我现在需要处理用户关于寻找提示词工程相关IPython Notebook文件或教程的请求。首先,我要回顾用户提供的系统级指令和引用内容,确保回答符合格式要求。用户要求使用中文,行内数学公式用$...$,独立公式用$$...$$,并且生成相关问题。同时,回答需要结构清晰,引用适当的内容。 首先,我需要确定用户的需求。用户提到“prompt engineering ipynb 文件 教程 示例”,说明他们正在寻找Jupyter Notebook格式的教程或示例,这可能包括代码示例、实践指南或案例分析。接下来,我需要根据提供的引用内容,寻找相关的资源。引用[1]到[4]中提到了提示工程的概述、应用、方法以及注意事项,比如小样本提示、思维链(CoT)提示和减少幻觉问题的方法。这些内容可以作为推荐教程的理论基础。 然后,我应该列出一些可能的资源。例如,官方文档如OpenAI Cookbook和LangChain文档通常会有Notebook示例。GitHub上的热门仓库如“Prompt-Engineering-Guide”可能包含教程。Kaggle和Google Colab也是常见的资源平台。教育平台如Coursera和Udemy可能有相关课程附带Notebook。此外,社区博客如Towards Data Science也会发布实践教程。 接下来,需要确保推荐的每个资源都符合用户需求,即包含IPython Notebook文件。例如,OpenAI的GitHub仓库中的示例代码,或者Hugging Face的Transformer教程。同时,引用用户提供的资料中的内容来支持推荐,比如引用[3]中提到的小样本提示和思维链提示,可以在教程中找到对应的实例。 然后,生成相关问题,这些问题应该围绕用户可能进一步探索的方向,比如如何优化提示词、评估提示效果、处理模型幻觉等,这些问题在引用[3]和[4]中都有涉及。 最后,检查回答是否符合格式要求:行内公式正确使用$...$,独立公式单独成段,引用标识正确添加,结构清晰。确保没有使用Markdown格式,语言自然口语化,分步骤说明思考过程,并在最后列出相关问题。</think>### 提示词工程相关IPython Notebook资源推荐 以下是结合理论知识和实践示例的IPython Notebook(.ipynb)资源推荐,涵盖提示词工程的核心方法(如小样本提示、思维链推理等)和实际应用场景: --- #### 1. **OpenAI官方示例库** - **内容**:包含基础提示设计、文本生成优化、代码生成等案例,例如使用$temperature$参数控制输出多样性。 - **资源链接**: [OpenAI Cookbook GitHub仓库](https://github.com/openai/openai-cookbook) 推荐文件:`getting-started-with-prompt-engineering.ipynb` - **特点**:官方维护,代码可直接运行,适合快速上手[^1]。 --- #### 2. **LangChain提示模板实战** - **内容**:通过`PromptTemplate`封装提示词模板,实现动态变量注入(如用户输入、上下文拼接)[^2]。 - **示例代码**: ```python from langchain import PromptTemplate template = "请将以下文本翻译为{target_language}:\n{text}" prompt = PromptTemplate(input_variables=["text", "target_language"], template=template) formatted_prompt = prompt.format(text="Hello, world!", target_language="法语") ``` - **资源链接**: [LangChain官方文档-提示工程章节](https://python.langchain.com/docs/modules/model_io/prompts/) --- #### 3. **小样本提示与思维链(CoT)实现** - **场景**:通过添加少量示例(Few-Shot)引导模型完成复杂推理任务[^3]。 - **Notebook示例**: ```python prompt = """ 任务:解决数学应用示例输入:小明有3个苹果,买了5个后吃掉2个,还剩多少? 示例输出:3 + 5 = 8,8 - 2 = 6。答案是6。 请解决以下问题:{question} """ ``` - **推荐资源**: [Google Colab - CoT Prompting教程](https://colab.research.google.com/github/google-research/prompt-tuning/blob/main/notebooks/ChainOfThought.ipynb) --- #### 4. **对抗模型幻觉的参考文本注入** - **方法**:通过附加参考文本约束生成结果,减少虚构回答(如引用[4]所述)。 - **代码片段**: ```python context = "根据《2023人工智能白皮书》,大模型幻觉发生率为12%。" user_query = "大模型幻觉的常见发生率是多少?" prompt = f"参考文本:{context}\n问题:{user_query}\n答案:" ``` - **实践案例**: [Hugging Face Prompt Engineering教程](https://huggingface.co/learn/nlp-course/chapter8/2) --- #### 5. **结构化输出生成** - **技术**:通过自然语言指令定义JSON/XML格式输出,结合函数调用(如OpenAI的`response_format`参数)。 - **Notebook链接**: [OpenAI结构化输出示例](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb) --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值