Keras框架下的猫狗识别(二)

Tensorflow学习(使用jupyter notebook)

Keras框架下的猫狗识别(一)


前言

紧接上文
Keras框架下的猫狗识别(一)

  上文提到对于数据集的提前处理方法和技巧,而在这篇博客中,我们继续进行对该识别模型的构建和训练验证。   该模型是基于最简单的CNN模型,并不保证其较高的准确性,目的只是为了熟悉CNN神经网络的简单构建。

一、数据预处理

Keras框架下的猫狗识别(一)

  在上一篇博客中,博主已经将数据预处理的内容和技巧简述大概。这里就不再多余重复。这篇博客的重点是CNN暑假网络的构建方法和流程。

二、使用步骤

1.引入库

代码如下:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Convolution2D, MaxPooling2D
from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import os
  首先,最重要的还是要先引入模型训练所需要的库来作为模型搭建的基础。这里我先对引入的库做一个大概的介绍:

Sequential:字面上的翻译是顺序,但是在这里可就不是简单的连续了。相反的,Sequential模型可以构建非常复杂的神经网络,包括全连接神经网络、卷积神经网络(CNN)、循环神经网络(RNN)、等等。

Convolution2D:卷积层,一般用在和图像处理有关的模型构建中

MaxPooling2D:池化层

Activatione:激活函数,一般常用的激活函数有 relu、valid

Dropout,:Dropout可以比较有效的缓解过拟合的发生,在一定程度上达到正则化的效果。

Flatten:Flatten层用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡

Dense:Dense layer 就是常提到和用到的全连接层

Adam:优化器

ImageDataGenerator:用以对数据文件的处理

2.定义模型

代码如下:

#定义模型
model = Sequential()
model.add(Convolution2D(input_shape=(150,150,3), filters=32, kernel_size=3, strides=1, padding='same', activation = 'relu'))
model.add(Convolution2D(filters=32, kernel_size=3, strides=1, padding='same', activation = 'relu'))
model.add(MaxPooling2D(pool_size=2, strides=2, padding='valid'))

model.add(Convolution2D(filters=64, kernel_size=3, strides=1, padding='same', activation = 'relu'))
model.add(Convolution2D(filters=64, kernel_size=3, strides=1, padding='same', activation = 'relu'))
model.add(MaxPooling2D(pool_size=2, strides=2, padding='valid'))

model.add(Convolution2D(filters=128, kernel_size=3, strides=1, padding='same', activation = 'relu'))
model.add(Convolution2D(filters=128, kernel_size=3, strides=1, padding='same', activation = 'relu'))
model.add(MaxPooling2D(pool_size=2, strides=2, padding='valid'))

model.add(Flatten())
model.add(Dense(64,activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(2,activation = 'softmax'))

# 定义优化器
adam = Adam(lr=1e-4)

# 定义优化器,loss function,训练过程中计算准确率
model.compile(optimizer=adam,loss='categorical_crossentropy',metrics=['accuracy'])

model.summary()
  这里的就是搭建了一段简单的CNN神经网络,使用卷积层、池化层、全连接层 、Flatten层相互堆叠而形成的一个拥有2941,410神经元的神经网络模型。   当然,笔者这里构建的神经网络只是一个示范。这样构建的神经网络也可能是导致最后模型准确度不高的原因之一。对于神经网络的搭建,仍然有着更好的方法来搭建更好的模型来使得准确性提高,同时也可以极大的缩短训练所需要的时间。

3.训练数据生成

代码如下:

# 训练集数据处理
train_datagen = ImageDataGenerator(
        rescale=1./255,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True)

# 测试集数据处理
test_datagen = ImageDataGenerator(rescale=1./255)

batch_size = 32
# 生成训练数据
train_generator = train_datagen.flow_from_directory(
        'train',  # 训练数据路径
        target_size=(150, 150),  # 设置图片大小
        batch_size=batch_size # 批次大小
        ) 

# 测试数据
test_generator = test_datagen.flow_from_directory(
        'test',  # 训练数据路径
        target_size=(150, 150),  # 设置图片大小
        batch_size=batch_size # 批次大小
        )
  在经过了上篇博客的数据预处理后,在这一步我们所需要完成的任务就少了很多,我们只需要生成训练数据集和测试数据集即可。   这里的操作也相当的简单,但有一点要说的就是:rescale=1./255,这里的操作是对图片格式进行归一化处理,而归一化处理在深度学习中起着奇效,通过归一化处理,可以大大降低损失,提高准确度。

4.训练开始

  至此,我们就完成了所有的前期工作,接下来,我们便可以开始训练模型了。 代码如下:
model.fit_generator(
        train_generator,
        steps_per_epoch=totalFileCount/batch_size,
        epochs=10,
        validation_data=test_generator,
        validation_steps=1000/batch_size,
        )
  对于这个训练,有几个参数需要说明下:

train_generator:这就是上一步所生成的训练数据集。

validation_data:而这就是我们需要传入的上一步所生成的测试集。需要注意的是这里并不能像train_generator那样写法,必须得validation_data=test_generator这样写,带有validation_data=这样的赋值关系。

steps_per_epoch:使用训练集训练时,每次训练时使用完图片所需要的次数,受到batch_size(批次大小)和totalFileCount(文件总数)的影响。

validation_steps:使用测试集测试准确性时,每次测试时使用完图片所需要的次数,受到batch_size(批次大小)和totalFileCount(文件总数)的影响。

epochs:训练次数。但需要注意到是,训练次数越大,并不代表训练的效果会越好,并且训练次数一旦增大,所需要的时间也会增加。

  由于笔者只是为了熟悉其操作,对于准确性要求并不是那么高,便只是达到了0.7427的准确度。

训练过程

5.保存模型

代码如下:

model.save('CNN.h5')
  将适合的模型保存。

总结

  综上,再结合之前的博客,便是构建CNN神经网络的主要操作过程了。后续会继续完成VGG16模型这一块的博客。   由于博主也是刚开始学习,如有不足和问题,请指正。
  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 基于Keras猫狗识别分类是计算机视觉领域中的图像分类问题。图像分类的过程可以分为以下几个步骤。 首先,需要准备好猫狗图像的数据集。数据集应包含一定数量的猫和狗的图像,并且每个图像都需要被标记为猫或狗。这个数据集将用于模型的训练和测试。 其次,需要建立一个深度学习模型来进行图像分类。在Keras中,可以使用已经预定义好的卷积神经网络模型(如VGG16、ResNet等),也可以自定义网络结构。该模型将有助于提取图像中的特征。 然后,需要对数据集进行预处理。这包括将图像进行大小调整、归一化以及图像增强等操作。预处理有助于提高模型的训练效果和泛化能力。 接下来,将数据集划分为训练集和测试集。训练集用于模型的训练,而测试集用于评估模型的性能。通常,大部分数据被用于训练,剩余的一部分数据用于测试。 然后,使用训练集来训练模型。训练过程中,模型将通过学习样本之间的模式和特征来调整自身的权重和参数,以最小化分类误差。 最后,使用测试集来评估模型的性能。可以计算模型的准确率、精确率、召回率和F1值等指标来衡量模型的分类效果。根据评估结果,可以对模型进行调整和优化。 总之,基于Keras猫狗识别分类是通过构建深度学习模型,对图像数据进行预处理和训练,来实现对猫狗图像的分类识别。这个过程中需要合理选择模型、优化参数,以及对数据集进行合适的处理和划分,以达到高效准确地分类识别。 ### 回答2: 基于Keras猫狗识别分类是计算机视觉领域中的图像分类问题,图像分类过程十分复杂。首先,对于猫狗识别分类问题,我们需要收集大量的带有标签的猫和狗的图像数据集。这个数据集应该包含足够多的猫和狗的样本,涵盖不同种类、姿势和背景的图像。 接下来,我们需要对数据进行预处理,包括图像的大小调整、归一化处理、数据增强等。这些步骤可以提升模型的性能和泛化能力。 然后,我们使用Keras框架搭建神经网络模型。在图像分类任务中,常用的模型是卷积神经网络(CNN)。CNN模型通过一系列的卷积层、池化层和全连接层来提取图像特征和进行分类。Keras提供了简洁的API和丰富的层类型,使得模型的搭建变得简单易用。 训练模型时,我们需要将数据集分成训练集和验证集,用训练集进行模型参数的优化,验证集用于评估模型的性能和调整超参数的选择。训练过程中,我们通过设置适当的学习率、批量大小和迭代次数来优化模型。Keras提供了不同的优化器和损失函数,可以根据任务的需要进行选择。 训练完成后,我们需要对模型进行评估和测试。通过测试集对模型进行性能评估,可以得到模型的准确率、精确率、召回率等指标。如果模型满足需求,则可以将其应用于实际的猫狗图片分类任务中。 总之,基于Keras猫狗识别分类是一项挑战性的任务,需要收集和预处理大量数据,搭建合适的神经网络模型,并通过训练和评估来优化和选择模型,最终实现准确的猫狗分类。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值