Tensorflow 2.0 keras.models.Sequential() Model() 创建网络的若干方式 及共享权重问题

本文介绍了在Tensorflow 2.0中使用tf.keras.Sequential和tf.keras.Model创建神经网络的不同方法,包括简单线性堆叠和复杂网络构造。还详细讨论了如何通过继承类来构建网络,以及如何实现权重共享。此外,文章提到了Tensorflow静态图与Pytorch动态图的区别,并提供了网络训练的相关链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

keras建立网络的方法可以分为keras.models.Sequential() 和keras.models.Model()、继承类三种方式。
注意:tensorflow2.* 以后的版本可以直接使用tf.keras.Sequential()和tf.keras.Model()两个类。不用再使用keras.models的API

keras.models.Sequential() ()

适用于简单线性堆叠网络。
流程:创建Sequential()对象,逐层堆叠网络

import tensorflow as tf
from tensorflow.keras import layers, models

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

model
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值