BST中所有结点之和(设结点个数为n,且中序遍历为等差数列)

       其实,就是要求最小值和最大值之和, 程序如下:

 

#include <iostream>
using namespace std;

// BST的结点
typedef struct node
{
	int key;
	struct node *lChild, *rChild;
}Node, *BST;

// 在给定的BST插入element, 使之称为新的BST
bool BSTInsert(Node * &p, int element)
{
	if(NULL == p) // 空树
	{
		p = new Node;
		p->key = element;
		p->lChild = p->rChild = NULL;
		return true;
	}

	if(element == p->key) // BST中不能有相等的值
		return false;

	if(element < p->key)  // 递归
		return BSTInsert(p->lChild, element);

	return BSTInsert(p->rChild, element); // 递归
}

// 建立BST
void createBST(Node * &T, int a[], int n)
{
	T = NULL; 
	int i;
	for(i = 0; i < n; i++)
	{
		BSTInsert(T, a[i]);
	}
}

int minPlusMax(BST T)
{
	Node *p = T;
	while(NULL != T->lChild) // 一路向左狂奔
		T = T->lChild;
	
	while(NULL != p->rChild) // 一路向右狂奔
		p = p->rChild;
	
	return T->key + p->key;
}

int main()
{
	int a[10] = {4, 5, 2, 1, 0, 9, 3, 7, 6, 8};
	int n = 10;

	BST T = NULL;

	// 并非所有的a[]都能构造出BST,所以,最好对createBST的返回值进行判断
	createBST(T, a, n);
	
	// minPlusMax(T) * n 必然为偶数,所以不同担心截断
	cout << minPlusMax(T) * n / 2 << endl;

	return 0;
}

 
 

 

以下是用C语言实现的代码,其使用了递归的方式实现中序遍历,并在遍历过程判断二叉树是否为BST: ```c #include <stdio.h> #include <stdlib.h> #include <limits.h> // 使用 INT_MIN 和 INT_MAX 宏定义 // 定义二叉树节点结构体 struct Node { int data; struct Node* left; struct Node* right; }; // 创建一个新的二叉树节点 struct Node* newNode(int data) { struct Node* node = (struct Node*) malloc(sizeof(struct Node)); node->data = data; node->left = NULL; node->right = NULL; return node; } // 中序遍历二叉树并判断是否为BST int isBSTUtil(struct Node* node, int min, int max) { if (node == NULL) return 1; // 空树为BST if (node->data < min || node->data > max) return 0; // 不满足BST条件 return isBSTUtil(node->left, min, node->data - 1) && isBSTUtil(node->right, node->data + 1, max); // 递归判断左右子树 } // 判断是否为BST int isBST(struct Node* node) { return isBSTUtil(node, INT_MIN, INT_MAX); // INT_MIN 和 INT_MAX 是 C 语言 int 类型的最小和最大 } // 中序遍历并输出二叉树 void inOrder(struct Node* node) { if (node == NULL) return; inOrder(node->left); printf("%d ", node->data); inOrder(node->right); } int main() { // 创建一棵二叉树 struct Node* root = newNode(4); root->left = newNode(2); root->right = newNode(5); root->left->left = newNode(1); root->left->right = newNode(3); // 中序遍历并输出二叉树 printf("In-order traversal:\n"); inOrder(root); printf("\n"); // 判断二叉树是否为BST if (isBST(root)) { printf("This binary tree is a BST.\n"); } else { printf("This binary tree is not a BST.\n"); } return 0; } ``` 上面的代码,`isBSTUtil` 函数用来判断一棵二叉树是否为BST,参数 `min` 和 `max` 表示当前节点的必须在 `[min, max]` 的范围内,否则不满足BST条件。`isBST` 函数用来调用 `isBSTUtil` 函数并返回结果。`inOrder` 函数用来中序遍历二叉树并输出节点的。最后在 `main` 函数创建一棵二叉树并调用相关函数进行操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值