其实,就是要求最小值和最大值之和, 程序如下:
#include <iostream>
using namespace std;
// BST的结点
typedef struct node
{
int key;
struct node *lChild, *rChild;
}Node, *BST;
// 在给定的BST插入element, 使之称为新的BST
bool BSTInsert(Node * &p, int element)
{
if(NULL == p) // 空树
{
p = new Node;
p->key = element;
p->lChild = p->rChild = NULL;
return true;
}
if(element == p->key) // BST中不能有相等的值
return false;
if(element < p->key) // 递归
return BSTInsert(p->lChild, element);
return BSTInsert(p->rChild, element); // 递归
}
// 建立BST
void createBST(Node * &T, int a[], int n)
{
T = NULL;
int i;
for(i = 0; i < n; i++)
{
BSTInsert(T, a[i]);
}
}
int minPlusMax(BST T)
{
Node *p = T;
while(NULL != T->lChild) // 一路向左狂奔
T = T->lChild;
while(NULL != p->rChild) // 一路向右狂奔
p = p->rChild;
return T->key + p->key;
}
int main()
{
int a[10] = {4, 5, 2, 1, 0, 9, 3, 7, 6, 8};
int n = 10;
BST T = NULL;
// 并非所有的a[]都能构造出BST,所以,最好对createBST的返回值进行判断
createBST(T, a, n);
// minPlusMax(T) * n 必然为偶数,所以不同担心截断
cout << minPlusMax(T) * n / 2 << endl;
return 0;
}