交通网络多步速度预测:一种考虑时空相关性的深度学习方法

本文提出了一种新的深度学习结构,即注意图卷积序列到序列模型(AGC-Seq2Seq),将图卷积网络和注意机制集成到Seq2Seq框架中,以开发能够描述多步流量预测中时空相关性的预测模型。考虑到Seq2Seq模型的现有训练方法不适用于时间序列问题,我们在此提出的框架中设计了一种新的训练方法。

AGC-Seq2Seq,该框架通过Seq2Seq模型和图卷积层从时空域协同提取特征。为了克服多步预测的挑战并捕获城市交通模式的时间异质性,模型中进一步引入了注意机制。为Seq2Seq框架设计了一种新的训练方法,旨在多步交通预测,以取代现有的训练方法(即强制教学和计划采样)。它将多维特征(例如历史统计信息和一天中的时间)与时空速度变量协调在一个端到端的深度学习结构中,并使测试周期的输入与训练周期一致。

道路网建模为有向图,节点集N表示交点(路上的探测器或选定分界点),边集L代表路段。A是链接集的邻接矩阵。即如果链接li和链接lj是相连的,则A(i,j)=1。路段li在第t个时间段(5分钟)的速度定义为该时间间隔内车辆在该路段上的平均速度,用表示。第t个时间段道路网的速度定义为向量,其中第i个元素

经典的时间序列预测问题:最近历史m步观测数据可以为多步交通速度预测提供有价值的信息。但除了实时的交通速度信息外,还有一些外生变量,如time-of-day,weekday-or-weekend以及历史统计信息也有助于预测未来的交通速度。

time-of-day转换为有序整数N,比如00:00–00:05为,7:00–7:05为。weekday-or-weekend由变量

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值