时空图卷积网络:一种用于交通预测的深度学习框架

由于交通流的高度非线性和复杂性,传统方法不能满足中长期预测任务的要求,其往往忽略了空间和时间依赖性。在本文中,我们提出了一种新的深度学习框架,时空图卷积网络(STGCN),以解决交通领域的时间序列预测问题(即交通预测)。我们不使用正则卷积和循环单元,而是在图上描述问题,并建立具有完整卷积结构的模型,这使得训练速度更快,参数更少。该体系结构包括几个时空卷积块,它们是图形卷积层和卷积序列学习层的组合,用于建模空间和时间依赖性。这在交通研究中首次应用纯卷积结构从图形结构的时间序列中同时提取时空特征。

交通研究中,交通流的基本变量,即速度、交通量和密度,通常被选为监测交通状况的当前状态的和预测未来的指标。根据预测的长度,交通预测通常分为两个尺度:短期(5∼ 30分钟),中长期(超过30分钟)。大多数流行的统计方法(例如,线性回归)都能很好地进行短期预测。然而,由于交通流的不确定性和复杂性,这些方法对于相对长期的预测效果较差。

之前的中长期交通预测研究大致可以分为两类:动态建模和数据驱动方法。动态建模:使用数学工具(如微分方程)和物理知识,通过计算模拟来描述交通问题。为了达到稳定状态,模拟过程不仅需要复杂的系统编程,还需要消耗大量的计算能力。型中不切实际的假设和简化也会降低预测精度。因此,随着交通数据收集和存储技术的快速发展,大量研究人员将注意力转移到数据驱动的方法上。

经典统计模型和机器学习模型是数据驱动方法的两个主要代表。时间序列分析中,ARIMA及其变体是基于经典统计学的最综合的方法之一。受到时间序列平稳假设的限制,也没有考虑时空相关性。因此,这些方法对于高度非线性交通流的表达性受限。近年来,经典统计模型在交通预测任务中受到了机器学习方法的有力挑战。这些模型,如k近邻算法(KNN)、支持向量机(SVM)和神经网络(NN),可以实现更高的预测精度和更复杂的数据建模。近年深度学习相关工作取得了重大进展,但这些密集网络很难从输入中联合提取时空特征,此外,在狭隘的限制甚至完全没有空间属性的情况下,这些网络的代表能力将受到严重阻碍。

为了充分利用空间特征,使用卷积神经网络(CNN)捕捉交通网络之间的相邻关系,同时在时间轴上使用递归神经网络(RNN)。用于序列学习的循环网络需要迭代训练,这将逐步引入误差累积。此外,基于RNN的网络(包括LSTM)众所周知难以训练且计算量大。

为了克服这些问题,我们引入了几种策略来有效地建模交通流的时间动态和空间依赖性。为了充分利用空间信息,我们通过一个通用图来建模交通网络,而不是单独处理它(例如网格或线段)。为了解决递归网络的固有缺陷,我们在时间轴上采用了完全卷积结构。

交通量预测是一个典型的时间序列预测问题,即给定之前的M个交通量观测值,预测下一个H时间步中最可能的交通量测量值(例如速度或交通流)。

其中,是在时间步t的n个路段的观测向量,其每个元素记录了单个路段的历史观测。在这项工作中,我们定义了一个图上的交通网络,重点关注结构化的交通时间序列。观测值vt不是独立的,而是在图中成对连接。

图结构的交通数据。每个vt代表时间t上当前交通状态的一个帧,该帧记录在图结构数据矩阵中。vt可以看作是在带权wij的图G上定义的图信号。在第t时间步,在图中,Vt是有限顶点集,对应于交通网络中n个监测站的观测值。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值