JiwuChat 开源AI群聊机器人(DeepSeek、讯飞星火、KimiAI已接入)WebRTC音视频通话屏幕共享、基于 Tauri2 和 Nuxt3 构建(几MB)多平台即时通讯应用、多种实时消息

一、JiwuChat软件介绍

文末提供下载

      JiwuChat 是一款基于 Tauri2 和 Nuxt3 构建的轻量(~8MB)多平台即时通讯聊天应用,具备多种实时消息、AI群聊机器人(DeepSeek、讯飞星火、KimiAI已接入)、WebRTC 音视频通话、屏幕共享以及 AI 购物功能。它支持无缝跨设备通信,涵盖文本、图片、文件和语音等多种消息,还支持群聊和可定制化设置,提供浅/深色模式,助力高效社交网络。

github作者地址:https://github.com/KiWi233333/JiwuChat

本文信息均来源于作者地址

二、功能列表

功能模块              功能描述    
用户模块             支持账号、手机号和邮箱的登录和注册 
消息模块             支持文本、图片、文件、语音、@用户、撤回、删除等多种消息类型的实时聊天功能   
会话模块             支持群聊、私聊多种聊天模式,群主、管理员、普通用户等角色   
联系人模块          支持查看、添加、删除联系人   
系统版本模块       支持应用的自动更新、查看版本公告等    
账号与安全模块    提供账号登录、修改密码、账号管理、设备安全、账号上下线等功能   
AI模块                  群聊支持多种AI聊天机器人,如DeepSeek、讯飞星火、KimiAI等  
智能客服模块        AI购物聊天功能,提供极物圈下的商品推荐    
文件下载管理模块    支持文件本地下载、打开、删除等功能    
语音视频模块        基于WebRTC的共享屏幕、语音、视频聊天功能   
其他功能               全局夜间模式、字体、自定义下载路径、多系统支持、定制化设置等   

功能展示

1.AI机器人 (DeepSeek、iFlytek Spark、Kimi AI) 

2.语音视频聊天 WebRTC

3.屏幕共享

4.手机应用

三、开发用户(普通体验用户文末下载安装包和源码)

安装依赖

# node 版本 >= 18 npm install -g pnpm pnpm install

开发

  • 没有后端服务,修改.env.development环境变量,或使用.env.production配置文件。
# 终端1:启动nuxt (发布环境)
pnpm run prod:nuxt
# 终端2:启动tauri
pnpm run dev:tauri
  • 后端服务,可采用自定义修改开发.env.development环境变量文件进行开发
# 建议分开运行
# 终端1:启动nuxt
pnpm run dev:nuxt
# 终端2:启动tauri
pnpm run dev:tauri

📦 打包

pnpm run build:tauri

 pnpm install error

查看源

pnpm get registry

临时修改

pnpm --registry https://registry.npm.taobao.org install any-touch

持久使用

pnpm config set registry https://registry.npm.taobao.org

还原

pnpm config set registry https://registry.npmjs.org

涉及技术栈 | Tech Stack

类别技术/组件版本号
框架Nuxt^3.14.159+
Tauri^2.1.0
UI 组件库Element Plus^2.8.4
状态管理Pinia2.1.7
工具库Vueuse10.11.0
构建与开发工具Nuxilts
Vitelts
代码质量ESLint8.56.0
Prettier3.3.2
类型检查TypeScript5.3.2
样式处理Sass1.77.6

软件安装包和源码下载

夸克网盘分享

KimiAI是一个基于Python的深度学习框架,它简化了模型开发流程并专注于自然语言处理(NLP)任务。如果你想搭建一个基础的KimiAI项目,你可以按照以下步骤进行: 1. **安装依赖**:首先,确保已经安装了Python(通常选择3.x版本),然后安装必要的库,如TensorFlow、PyTorch、NLTK或spaCy等。 ```bash pip install tensorflow numpy scikit-learn torch nltk (如果需要) ``` 2. **环境配置**:创建一个新的Python虚拟环境,比如`conda create -n kimienv python=3.8`,然后激活它。 3. **数据预处理**:准备用于训练的语言数据集,包括文本清洗、分词、标记化等工作,可以使用NLTK或transformers库。 4. **模型构建**:使用KimiAI框架(如果有的话,可能是某个社区库),建立一个基础的NLP模型,例如文本分类、情感分析或序列标注。 5. **训练模型**:加载数据到模型中,通过fit()函数进行训练,调整超参数以优化性能。 ```python model = KiMiModel() model.fit(train_data, epochs=10) ``` 6. **评估与验证**:用测试数据评估模型性能,查看准确率或其他指标。 7. **应用部署**:将模型保存成文件(如.h5或.pt),以便在未来直接加载使用,或者打包成API供外部应用调用。 ```python model.save('kimi_model.h5') ``` 请注意,由于KimiAI不是一个广泛使用的框架,可能不存在官方文档或专门的库。你需要查阅相关的教程或社区资源来找到适合的实现方法。如果你在网上找不到合适的资源,可以尝试查找类似Flair、Hugging Face Transformers这样的库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值