Python|基于Kimi大模型实现多轮对话,并将对话结果保存(3)

前言

本文是该专栏的第3篇,后面会持续分享AI大模型干货知识,记得关注。

在本专栏的上一篇文章中,笔者有详细介绍“基于kimi大模型,通过python实现单轮对话”,但是需要注意的是,有的时候我们在处理目标文本对象的时候,单轮对话并不能满足我们的需求。

为什么这么说?因为有的时候在处理目标文本对象的时候,我们需要先通过第一个文本对象来引出大模型的潜在回答,然后通过它的潜在回答,我们再继续向kimi大模型抛出我们的第二个文本对象,让大模型能够在第一个目标文本对象的基础之上,继续回答第二个文本对象的内容,依次类推,并做到循环往复。

而本文,笔者将基于kimi大模型,通过python来实现目标文本对象的多轮对话。具体的实现思路,以及完整的代码实现,直接往下看正文即可。(附带完整实现代码)

正文

目标需求:基于kimi大模型,通过python来实现目标文本对象的多轮对话,

### 单轮对话升级为多轮对话的技术方案 为了实现从单轮对话多轮对话的转换,主要思路在于维护会话状态利用上下文信息来指导后续的回答。这可以通过引入会话管理机制和增强模型理解能力来达成。 #### 维护会话状态 在每次交互之后记录用户的输入以及系统的响应作为历史消息的一部分。当新的请求到来时,将这些过往的信息传递给对话引擎以便其能更好地理解和回应当前的问题[^1]。 ```python class SessionManager: def __init__(self): self.sessions = {} def add_message(self, session_id, message): if session_id not in self.sessions: self.sessions[session_id] = [] self.sessions[session_id].append(message) def get_history(self, session_id): return self.sessions.get(session_id, []) ``` #### 增强模型的理解力 对于基于预训练的语言模型来说,在提供给定问题的同时附加上下文可以显著提高回复的质量。具体做法是在调用API之前构建包含先前交流内容的新查询字符串[^2]。 ```python def generate_contextual_query(history_messages, current_question): context = " ".join([msg['text'] for msg in history_messages]) full_query = f"{context} {current_question}" return full_query.strip() ``` #### 实现示例 下面是一个简单的例子展示了如何集成上述组件以支持多轮次互动: ```python from kimi_model import KimiModel # 假设这是已经定义好的Kimi大模型接口类 model = KimiModel() # 初始化模型实例 session_mgr = SessionManager() def handle_conversation(session_id, user_input): history = session_mgr.get_history(session_id) query_with_context = generate_contextual_query(history, user_input) response_text = model.generate_response(query_with_context) system_reply = {"role": "assistant", "text": response_text} session_mgr.add_message(session_id, {"role": "user", "text": user_input}) session_mgr.add_message(session_id, system_reply) return system_reply["text"] ``` 此代码片段实现了基本的功能框架,允许应用程序跟踪不同用户的独立聊天流程,确保每一轮交谈都能考虑到之前的讨论背景[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

写python的鑫哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值