FaceNet论文笔记: A Unified Embedding for Face Recognition and Clustering

这篇笔记介绍了FaceNet论文,它提出了一种将人脸识别任务转化为欧氏空间中向量距离比较的方法。通过深度学习将人脸映射到128维向量,使用Triplet Loss进行训练,解决了传统Softmax方法的不足。论文讨论了人脸识别的挑战,如开集与闭集问题,并对比了Triplet Loss与Contrastive Loss。实验表明Triplet Loss在效果和收敛性上优于Contrastive Loss。
摘要由CSDN通过智能技术生成

本文是对人脸识别的经典论文《FaceNet: A Unified Embedding for Face Recognition and Clustering》的一些笔记。笔记主要是基于文章来的,也参考引用了深度之眼CV方向Paper班的PPT。
论文下载地址 https://arxiv.org/abs/1503.03832

1. 引言

1.1 人脸识别的主要任务及挑战
  • Identification: 判断是谁
  • verification: 判断是不是谁
  • Clustering: 从大规模的脸数据集中找到相似的
  • 主要挑战: 侧脸、模糊、光照、遮挡、形变
1.2 人脸识别的开集与闭集问题
  • 闭集(close-set) 的人脸识别问题: 需要检测的人脸输入只在一定的范围内,测试的人脸全部都是train set 里的人,不会出现训练集之外的人。
  • 开集(open-set) 的人脸识别问题: 用于测试的人脸不一定会在train-set里。
1.3 传统的处理方式
  • 基于Softmax的方式: 使用一个间接的表示层,再通过softmax函数得到分类结果, 即中间层为人脸图像的向量映射,然后以分类层作为输出层。
  • 缺点: 不直接且低效(表示层的维度通常很高, 如1000维)
    Indirectness: 分类任务的Task并不能保证学习到的Feature适合于Recognition, 导致网络的泛化能力较弱
    Inefficiency: 原始用于分类的网络往往输出的维度过大(1000维), 导致效率低下,而本文中的Facenet的Embedding只有128维.
1.4 论文的主要思想
  • 基于Triplet-based损失函数(下面介绍)
  • 把每张人脸的图片, 通过深度学习的方式映射到一个欧式空间的128维的向量,之后的人脸比对及识别的话,直接比对不同图片的对应的向量即可(类型于词嵌入,可以理解为图片嵌入)
  • 对应向量的距离(欧式距离)越小, 那么两张图片就越接近,说明两张图片是同一个人的几率就更高,反之更低
  • 这样,前面的Identification的问题,就成了k-nearest neighbors的问题, 而Verification的问题就成了Threshold Decision的问题,而Clustering的问题就可以使用k-means或者agglomerative聚类的方式来处理
  • 元组的选择非常重要,选的好可以很快的收敛。

2 相关工作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值