目前阶段学习到由遗传算法(GA)自适应更新无迹卡尔曼(UKF)噪声协方差,这两种方法的结合需要考虑迭代时效问题,主要通过设定的终止代数来限制,前期需要先确定Q、R范围。
初步仿真结果如下:
目前的方案来看,在10000组数据的仿真时间还行,精度和噪声范围以及遗传算法的策略和参数可以进行调整。
然后,带噪声和不带噪声的程序一起调会更容易发现个别数据点噪声增大的原因。
继续学习,有交流可以邮1535503448@qq.com,一起进步。
目前阶段学习到由遗传算法(GA)自适应更新无迹卡尔曼(UKF)噪声协方差,这两种方法的结合需要考虑迭代时效问题,主要通过设定的终止代数来限制,前期需要先确定Q、R范围。
初步仿真结果如下:
目前的方案来看,在10000组数据的仿真时间还行,精度和噪声范围以及遗传算法的策略和参数可以进行调整。
然后,带噪声和不带噪声的程序一起调会更容易发现个别数据点噪声增大的原因。
继续学习,有交流可以邮1535503448@qq.com,一起进步。