遗传算法与无迹卡尔曼滤波融合进行荷电状态估算

文章研究了遗传算法在自适应更新无迹卡尔曼滤波器(UKF)噪声协方差中的应用,通过设定终止代数控制迭代时效。在10000组数据的仿真中,方案表现良好,允许调整Q、R范围和遗传算法参数以优化精度。同时,对比带噪声和不带噪声的程序有助于识别噪声增大问题。作者邀请有兴趣的读者交流,邮箱为1535503448@qq.com。
摘要由CSDN通过智能技术生成

目前阶段学习到由遗传算法(GA)自适应更新无迹卡尔曼(UKF)噪声协方差,这两种方法的结合需要考虑迭代时效问题,主要通过设定的终止代数来限制,前期需要先确定Q、R范围。

初步仿真结果如下:

 

 

 

目前的方案来看,在10000组数据的仿真时间还行,精度和噪声范围以及遗传算法的策略和参数可以进行调整。 

然后,带噪声和不带噪声的程序一起调会更容易发现个别数据点噪声增大的原因。

 

继续学习,有交流可以邮1535503448@qq.com,一起进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

stubi_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值