29、基于分数阶微积分和人工神经网络的疾病诊断模型研究

基于分数阶微积分和人工神经网络的疾病诊断模型研究

1. 研究结构概述

本研究聚焦于具有高度复杂和瞬态特性的疾病(如癌症),旨在通过整合分数阶微积分和人工神经网络(ANN),结合前馈反向传播(FFBP)算法,建立准确且可靠的模型,为疾病的诊断和预测提供支持。研究结构如下:
- 不同复杂数据集的建模与方法,涵盖生物(癌细胞数据集)和神经(中风数据集)数据集,以及分数阶微积分、分数阶导数、Caputo分数阶导数和人工神经网络等方法。
- 实验结果与讨论,通过对比不同导数模型处理后的数据集性能,确定最适合疾病的分数阶导数模型。

2. 数据集介绍
2.1 中风数据集

美国马萨诸塞大学医学院对1217名被诊断患有临床中风亚型的个体进行了检查,包括大血管(481例)、小血管(228例)、心源性栓塞(689例)和隐源性(528例)中风。数据集包含治疗和药物数据、病史、人口统计信息以及实验室测试结果等属性,数据集大小为(1926 × 23)。具体详情见表1:
|中风亚型|属性(单位)|治疗和药物数据|病史|人口统计信息|实验室测试结果|
| ---- | ---- | ---- | ---- | ---- | ---- |
|1 = 大血管(481)|(神经干预、他汀类药物、CT灌注、抗糖尿病药物、抗血小板药物、抗凝药物、抗高血压药物)|(中风/TIA病史、PAD/颈动脉疾病、高血压、高血脂、饮酒、糖尿病、吸烟、心房颤动、CAD、CHF)|(性别、年龄)|(TPA、90天mRS、入院NIHSS、出血转化)|
|2 = 小血管(228)| | | | |
|3 = 心源性栓塞(689)| | | | |

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方的例子。 简单的平方问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值