基于分数阶微积分和人工神经网络的疾病诊断模型研究
1. 研究结构概述
本研究聚焦于具有高度复杂和瞬态特性的疾病(如癌症),旨在通过整合分数阶微积分和人工神经网络(ANN),结合前馈反向传播(FFBP)算法,建立准确且可靠的模型,为疾病的诊断和预测提供支持。研究结构如下:
- 不同复杂数据集的建模与方法,涵盖生物(癌细胞数据集)和神经(中风数据集)数据集,以及分数阶微积分、分数阶导数、Caputo分数阶导数和人工神经网络等方法。
- 实验结果与讨论,通过对比不同导数模型处理后的数据集性能,确定最适合疾病的分数阶导数模型。
2. 数据集介绍
2.1 中风数据集
美国马萨诸塞大学医学院对1217名被诊断患有临床中风亚型的个体进行了检查,包括大血管(481例)、小血管(228例)、心源性栓塞(689例)和隐源性(528例)中风。数据集包含治疗和药物数据、病史、人口统计信息以及实验室测试结果等属性,数据集大小为(1926 × 23)。具体详情见表1:
|中风亚型|属性(单位)|治疗和药物数据|病史|人口统计信息|实验室测试结果|
| ---- | ---- | ---- | ---- | ---- | ---- |
|1 = 大血管(481)|(神经干预、他汀类药物、CT灌注、抗糖尿病药物、抗血小板药物、抗凝药物、抗高血压药物)|(中风/TIA病史、PAD/颈动脉疾病、高血压、高血脂、饮酒、糖尿病、吸烟、心房颤动、CAD、CHF)|(性别、年龄)|(TPA、90天mRS、入院NIHSS、出血转化)|
|2 = 小血管(228)| | | | |
|3 = 心源性栓塞(689)| | | | |
超级会员免费看
订阅专栏 解锁全文
34

被折叠的 条评论
为什么被折叠?



