如果一个数列S满足对于所有的合法的i,都有S[i + 1] = S[i] + d, 这里的d也可以是负数和零,我们就称数列S为等差数列。
小易现在有一个长度为n的数列x,小易想把x变为一个等差数列。小易允许在数列上做交换任意两个位置的数值的操作,并且交换操作允许交换多次。但是有些数列通过交换还是不能变成等差数列,小易需要判别一个数列是否能通过交换操作变成等差数列
输入描述:
输入包括两行,第一行包含整数n(2 ≤ n ≤ 50),即数列的长度。 第二行n个元素x[i](0 ≤ x[i] ≤ 1000),即数列中的每个整数。
输出描述:
如果可以变成等差数列输出"Possible",否则输出"Impossible"。
输入例子1:
3 3 1 2
输出例子1:
Possible思路
有两种方法,
方法1:利用等差数列的求和公式的变形,找出数列的和sum (Sn)和首项min (a1) ,判断计算的差值d是否能够是整数,也就是整除。
package wangyiSpring_2017;
import java.util.Arrays;
import java.util.Scanner;
/**
* @author xiaohao
* @date 创建时间:Aug 13, 2017 3:31:26 PM
* @version 1.0
*/
public class moveToArithmeticSequence {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int n=sc.nextInt();
int seq[]= new int[n];
for(int i=0;i<n;i++)
{
seq[i]=sc.nextInt();
}
if(isArithmeticSequence(seq,n))
System.out.println("Possible");
else
System.out.println("Impossible");
}
//方法1 利用等差数列求和公式计算
public static boolean isArithmeticSequence(int[] seq, int n) {
// TODO Auto-generated method stub
int sum=0;
int min=Integer.MAX_VALUE;
for(int i=0;i<n;i++)
{
sum+=seq[i];
min=Math.min(min, seq[i]);
}
if( (2*(sum-n*min)) % (n*(n-1))==0)
return true;
else
return false;
}
//方法2 先排序,在遍历数组,看是否等差
public static boolean isArithmeticSequence2(int[] seq, int n) {
Arrays.sort(seq);
int d=seq[1]-seq[0];
for(int i=2;i<n;i++)
{
if(d!=seq[i]-seq[i-1])
return false;
}
return true;
}
}