等差数列的概念和性质02

上接等差数列的概念和性质01

运算技巧

① 数列的项数的计算

a n = a 1 + ( n − 1 ) ⋅ d a_n=a_1+(n-1)\cdot d an=a1+(n1)d,可得项数 n = a n − a 1 d + 1 n=\cfrac{a_n-a_1}{d}+1 n=dana1+1,推广得到项数 n = a n − a m d + m n=\cfrac{a_n-a_m}{d}+m n=danam+m

如数列 2 1 , 2 3 , 2 5 , ⋯ , 2 2 n − 1 2^1,2^3,2^5,\cdots ,2^{2n-1} 21232522n1的项数的计算,其项数可以利用上标来计算,其上标刚好成等差数列,

项数 r = a n − a 1 d + 1 = ( 2 n − 1 ) − 1 3 − 1 + 1 = n r=\cfrac{a_n-a_1}{d}+1=\cfrac{(2n-1)-1}{3-1}+1=n r=dana1+1=31(2n1)1+1=n

  • 比如区间 ( 9 m − 1 + 8 9 , 9 2 m − 1 + 8 9 ) (9^{m-1}+\cfrac{8}{9},9^{2m-1}+\cfrac{8}{9}) (9m1+9892m1+98)有几个整数?

在上述区间的第一个整数是 9 m − 1 + 1 9^{m-1}+1 9m1+1,最后一个整数为 9 2 m − 1 9^{2m-1} 92m1,公差为 1 1 1

故所求个数为 9 2 m − 1 − ( 9 m − 1 + 1 ) 1 + 1 = 9 2 m − 1 − 9 m − 1 \cfrac{9^{2m-1}-(9^{m-1}+1)}{1}+1=9^{2m-1}-9^{m-1} 192m1(9m1+1)+1=92m19m1

② 约分技巧

当题目中出现 a n > 0 a_n>0 an>0,或者正项数列,则涉及方程或者不等式的运算中十之八九要约分,要么约掉 a n a_n an,或者约掉 a n + 1 + a n a_{n+1}+a_n an+1+an

引例1,如题目中有 ( a n + 1 + a n ) ( a n + 1 − a n ) = 2 ( a n + 1 + a n ) (a_{n+1}+a_n)(a_{n+1}-a_n)=2(a_{n+1}+a_n) (an+1+an)(an+1an)=2(an+1+an) a n > 0 a_n>0 an>0;由此得到 a n + 1 − a n = 2 a_{n+1}-a_n=2 an+1an=2

引例2,如 a n + 1 − a n + 1 = a n + a n a_{n+1}-\sqrt{a_{n+1}}=a_{n}+\sqrt{a_{n}} an+1an+1 =an+an ,则可知 a n > 0 a_n>0 an>0,变形得到 a n + 1 − a n = a n + 1 + a n a_{n+1}-a_{n}=\sqrt{a_{n+1}}+\sqrt{a_{n}} an+1an=an+1 +an

( a n + 1 + a n ) ( a n + 1 − a n ) = a n + 1 + a n (\sqrt{a_{n+1}}+\sqrt{a_{n}})(\sqrt{a_{n+1}}-\sqrt{a_{n}})=\sqrt{a_{n+1}}+\sqrt{a_{n}} (an+1 +an )(an+1 an )=an+1 +an ,即 a n + 1 − a n = 1 \sqrt{a_{n+1}}-\sqrt{a_{n}}=1 an+1 an =1,即数列 { a n } \{\sqrt{a_{n}}\} {an }为等差数列;

③在 Δ A B C \Delta ABC ΔABC中,三个内角 A 、 B 、 C A、B、C ABC成等差数列,则 B = π 3 B=\cfrac{\pi}{3} B=3π。三条边成等差数列,则 3 n , 4 n , 5 n 3n,4n,5n 3n4n5n就是一个特例,可以考虑赋值法。

④ 当下标比较小的时候,直接计算比变形求解要来的快。注意恰当的数学方法选择策略,防止思维定势。

比如在数列 { a n } \{a_n\} {an}中, a 1 = 3 a_1=3 a1=3 a n + 1 = 3 a n a n + 3 a_{n+1}=\cfrac{3a_n}{a_n+3} an+1=an+33an,求 a 4 a_4 a4的值,

法1:由 a 1 = 3 a_1=3 a1=3和递推公式 a n + 1 = 3 a n a n + 3 a_{n+1}=\cfrac{3a_n}{a_n+3} an+1=an+33an,直接计算 a 2 a_2 a2 a 3 a_3 a3 a 4 a_4 a4,速度要快的多。

法2:先利用倒数法求的通项公式 a n a_n an,再计算 a 4 a_4 a4,要比法1的思路慢一些。

⑤设元技巧

当题目已知三个数成等差数列时,我们常常依次设三个数为 a − d a-d ad a a a a + d a+d a+d,这样设元的优越性在于其和为 3 a 3a 3a,如果题目恰好已知了其和的值,则中间的数立马可知,这样变量就剩下一个 d d d了;当已知五个数成等差数列时,常设为 a − 2 d a-2d a2d a − d a-d ad a a a a + d a+d a+d a + 2 d a+2d a+2d

给出方式

  • 直接给出: a n + 1 − a n = 3 a_{n+1}-a_n=3 an+1an=3
  • 赋值给出: a n + m = a n + a m a_{n+m}=a_n+ a_m an+m=an+am a 1 = 2 a_1=2 a1=2,求通项公式 a n a_n an1
  • 变形给出: S n + 1 = S n + a n + 3 S_{n+1}=S_n+a_n+3 Sn+1=Sn+an+3,即 a n + 1 − a n = 3 a_{n+1}-a_n=3 an+1an=3
  • 变形给出:点 ( a n + 1 , a n ) (a_{n+1},a_n) (an+1an)在直线 x − y − 3 = 0 x-y-3=0 xy3=0上,则 a n + 1 − a n = 3 a_{n+1}-a_n=3 an+1an=3
  • 运算给出: ( a n + 1 + a n ) ( a n + 1 − a n ) = 2 ( a n + 1 + a n ) (a_{n+1}+a_n)(a_{n+1}-a_n)=2(a_{n+1}+a_n) (an+1+an)(an+1an)=2(an+1+an) a n > 0 a_n>0 an>0
  • 向量给出: P n P n + 1 → = ( 1 , a n + 1 − a n ) = ( 1 , 3 ) \overrightarrow{P_nP_{n+1}}=(1,a_{n+1}-a_n)=(1,3) PnPn+1 =(1an+1an)=(13)
  • 构造给出:

引例,如 ( n + 1 ) a n = n a n + 1 (n+1)a_n=na_{n+1} (n+1)an=nan+1,构造得到, a n + 1 n + 1 = a n n \cfrac{a_{n+1}}{n+1}=\cfrac{a_n}{n} n+1an+1=nan,即 a n + 1 n + 1 − a n n = 0 \cfrac{a_{n+1}}{n+1}-\cfrac{a_n}{n}=0 n+1an+1nan=0,即数列 { a n n } \{\cfrac{a_n}{n}\} {nan}为等差数列[常数列];

引例如 ( n + 1 ) a n + 1 = n a n (n+1)a_{n+1}=na_n (n+1)an+1=nan,构造得到, ( n + 1 ) a n + 1 − n a n = 0 (n+1)a_{n+1}-na_n=0 (n+1)an+1nan=0,即数列 { n ⋅ a n } \{n\cdot a_n\} {nan}为常数列;

其他请参阅数列的常见构造方法

典例剖析

已知等差数列 { a n } \{a_n\} {an} { b n } \{b_n\} {bn},满足 a 1 + b 10 = 9 a_1+b_{10}=9 a1+b10=9 a 3 + b 8 = 15 a_3+b_8=15 a3+b8=15,则 a 5 + b 6 a_5+b_6 a5+b6=______________.

分析:由已知得到, a 3 + b 8 = 2 a 3 + 2 b 8 2 a_3+b_8=\cfrac{2a_3+2b_8}{2} a3+b8=22a3+2b8

= ( a 1 + a 5 ) + ( b 10 + b 6 ) 2 = ( a 1 + b 10 ) + ( a 5 + b 6 ) 2 =\cfrac{(a_1+a_5)+(b_{10}+b_6)}{2}=\cfrac{(a_1+b_{10})+(a_5+b_6)}{2} =2(a1+a5)+(b10+b6)=2(a1+b10)+(a5+b6)

15 = 9 + ( a 5 + b 6 ) 2 15=\cfrac{9+(a_5+b_6)}{2} 15=29+(a5+b6),解得 a 5 + b 6 = 21 a_5+b_6=21 a5+b6=21

由正数组成的等差数列 { a n } \{a_n\} {an} { b n } \{b_n\} {bn}的前 n n n项和分别为 S n S_n Sn T n T_n Tn,且 a n b n = 2 n − 1 3 n − 1 \cfrac{a_n}{b_n}=\cfrac{2n-1}{3n-1} bnan=3n12n1,则 S 5 T 5 \cfrac{S_5}{T_5} T5S5=______________。

分析: S 5 T 5 = 5 a 3 5 b 3 = a 3 b 3 = 2 × 3 − 1 3 × 3 − 1 = 5 8 \cfrac{S_5}{T_5}=\cfrac{5a_3}{5b_3}=\cfrac{a_3}{b_3}=\cfrac{2\times 3-1}{3\times 3-1}=\cfrac{5}{8} T5S5=5b35a3=b3a3=3×312×31=85

【2021届高三文数三轮模拟题】已知 S n S_n Sn T n T_n Tn 分别为等差数列 { a n } \{a_n\} {an} { b n } \{b_n\} {bn} 的前 n n n 项和,若 S n T n = 2 n + 1 3 n + 2 \cfrac{S_n}{T_n}=\cfrac{2n+1}{3n+2} TnSn=3n+22n+1,则 a 5 b 3 \cfrac{a_5}{b_3} b3a5=___________.

解析: 由于等差数列的前 n n n 项和公式为 S n = A n 2 + B n = A n ( n + B A ) S_n=An^2+Bn=An(n+\cfrac{B}{A}) Sn=An2+Bn=An(n+AB),又由于 S n T n = 2 n + 1 3 n + 2 \cfrac{S_n}{T_n}=\cfrac{2n+1}{3n+2} TnSn=3n+22n+1

[备注:说明 S n S_n Sn T n T_n Tn 约去了相同的公因式,应该是关于 n n n 的一次式,不妨设为 k n kn kn]

故可以设 S n = k n ( 2 n + 1 ) S_n=kn(2n+1) Sn=kn(2n+1) T n = k n ( 3 n + 2 ) T_n=kn(3n+2) Tn=kn(3n+2)

a 5 b 3 = S 5 − S 4 T 3 − T 2 = 55 k − 36 k 33 k − 16 k = 19 k 17 k = 19 17 \cfrac{a_5}{b_3}=\cfrac{S_5-S_4}{T_3-T_2}=\cfrac{55k-36k}{33k-16k}=\cfrac{19k}{17k}=\cfrac{19}{17} b3a5=T3T2S5S4=33k16k55k36k=17k19k=1719.

在等差数列 { a n } \{a_n\} {an}中, a 1 = − 2018 a_1=-2018 a1=2018,其前 n n n项和为 S n S_n Sn,若 S 12 12 − S 10 10 = 2 \cfrac{S_{12}}{12}-\cfrac{S_{10}}{10}=2 12S1210S10=2,则 S 2018 S_{2018} S2018的值等于【】

$A.-2018$ $B.-2016$ $C.-2019$ $D.-2017$

分析:由题意可知,数列 { S n n } \{\cfrac{S_n}{n}\} {nSn}为等差数列,由 S 12 12 − S 10 10 = 2 \cfrac{S_{12}}{12}-\cfrac{S_{10}}{10}=2 12S1210S10=2,可知其公差为 1 1 1

S 2018 2018 = S 1 1 + ( 2018 − 1 ) × 1 = − 2018 + 2017 = − 1 \cfrac{S_{2018}}{2018}=\cfrac{S_1}{1}+(2018-1)\times 1=-2018+2017=-1 2018S2018=1S1+(20181)×1=2018+2017=1

S 2018 = − 2018 S_{2018}=-2018 S2018=2018。故选 A A A

【2014高考全国卷Ⅰ】已知数列 { a n } \{a_n\} {an}的前 n n n项和为 S n S_n Sn a 1 = 1 a_1=1 a1=1 a n ≠ 0 a_n\neq 0 an=0 a n a n + 1 = λ S n − 1 a_na_{n+1}=\lambda S_n-1 anan+1=λSn1,其中 λ \lambda λ为常数,

(1)证明: a n + 2 − a n = λ a_{n+2}-a_n=\lambda an+2an=λ

分析:先想办法消掉 S n S_n Sn类,让条件中只剩下 a n a_n an类,故求解如下:

由题设知道, a n a n + 1 = λ S n − 1 a_na_{n+1}=\lambda S_n-1 anan+1=λSn1①,

则有 a n + 1 a n + 2 = λ S n + 1 − 1 a_{n+1}a_{n+2}=\lambda S_{n+1}-1 an+1an+2=λSn+11②,

②-①得到, a n + 1 a n + 2 − a n a n + 1 = λ ( S n + 1 − S n ) a_{n+1}a_{n+2}-a_na_{n+1}=\lambda(S_{n+1}-S_n) an+1an+2anan+1=λ(Sn+1Sn)

a n + 1 ( a n + 2 − a n ) = λ a n + 1 a_{n+1}(a_{n+2}-a_n)=\lambda a_{n+1} an+1(an+2an)=λan+1

由于 a n + 1 ≠ 0 a_{n+1}\neq 0 an+1=0,约掉 a n + 1 a_{n+1} an+1得到,

a n + 2 − a n = λ a_{n+2}-a_n=\lambda an+2an=λ

【注意】上式表明,数列 { a n } \{a_n\} {an}中,奇数项成等差数列,首项为 a 1 a_1 a1,公差为 λ \lambda λ

偶数项成等差数列,首项为 a 2 a_2 a2,公差为 λ \lambda λ

(2)是否存在 λ \lambda λ,使得 { a n } \{a_n\} {an}为等差数列,并说明理由。

分析:存在满足题意的实数 λ \lambda λ,使得数列 { a n } \{a_n\} {an}成等差数列,理由如下:

由题设可知, a 1 = 1 a_1=1 a1=1,令 n = 1 n=1 n=1,则 a 1 a 2 = λ S 1 − 1 a_1a_2=\lambda S_1-1 a1a2=λS11,解得 a 2 = λ − 1 a_2=\lambda-1 a2=λ1

又由 a n + 2 − a n = λ a_{n+2}-a_n=\lambda an+2an=λ可知,当 n = 1 n=1 n=1时, a 3 = λ + 1 a_3=\lambda+1 a3=λ+1

2 a 2 = a 1 + a 3 2a_2=a_1+a_3 2a2=a1+a3,即 2 ( λ − 1 ) = 1 + λ + 1 2(\lambda-1)=1+\lambda+1 2(λ1)=1+λ+1,解得 λ = 4 \lambda=4 λ=4

a n + 2 − a n = 4 a_{n+2}-a_n=4 an+2an=4,且可知

数列 { a 2 n − 1 } \{a_{2n-1}\} {a2n1}是首项为 a 1 = 1 a_1=1 a1=1,公差为 4 4 4的等差数列, a 2 n − 1 = 4 n − 3 a_{2n-1}=4n-3 a2n1=4n3

a 2 n − 1 = 1 + [ ( 2 n − 1 ) − 1 ] 2 × 4 = 4 n − 3 = 2 ( 2 n − 1 ) − 1 a_{2n-1}=1+\cfrac{[(2n-1)-1]}{2}\times 4=4n-3=2(2n-1)-1 a2n1=1+2[(2n1)1]×4=4n3=2(2n1)1

数列 { a 2 n } \{a_{2n}\} {a2n}是首项为 a 2 = 3 a_2=3 a2=3,公差为 4 4 4的等差数列, a 2 n = 4 n − 1 a_{2n}=4n-1 a2n=4n1

a 2 n = 3 + ( 2 n − 2 ) 2 × 4 = 4 n − 1 = 2 ( 2 n ) − 1 a_{2n}=3+\cfrac{(2n-2)}{2}\times 4=4n-1=2(2n)-1 a2n=3+2(2n2)×4=4n1=2(2n)1

所以 a n = 2 n − 1 a_n=2n-1 an=2n1 n ∈ N ∗ n\in N^* nN,即 a n + 1 − a n = 2 a_{n+1}-a_n=2 an+1an=22

因此存在满足题意的实数 λ \lambda λ,使得数列 { a n } \{a_n\} {an}成等差数列。

【2018•凤中模拟】【考点:数列的单调性,二次函数的对称性和单调性,恒成立命题】 已知数列 { a n } \{a_n\} {an}中, a n = n 2 − k n ( k ∈ N ) a_n=n^2-kn(k\in N) an=n2kn(kN),且 { a n } \{a_n\} {an}单调递增,则 k k k的取值范围为【 】

$A.(-\infty,2]$ $B.(-\infty,3)$ $C.(-\infty,2)$ $D.(-\infty,3]$

【法1】、由于 a n = n 2 − k n ( n ∈ N ∗ ) a_n=n^2-kn(n\in N^*) an=n2kn(nN),且 { a n } \{a_n\} {an}单调递增,

所以 a n + 1 − a n > 0 a_{n+1}-a_n>0 an+1an>0 ∀ n ∈ N ∗ \forall n\in N* nN都成立,

a n + 1 − a n = ( n + 1 ) 2 − k ( n + 1 ) − n 2 + k n = 2 n + 1 − k a_{n+1}-a_n=(n+1)^2-k(n+1)-n^2+kn=2n+1-k an+1an=(n+1)2k(n+1)n2+kn=2n+1k,所以由 2 n + 1 − k > 0 2n+1-k>0 2n+1k>0

k < 2 n + 1 k<2n+1 k<2n+1恒成立,可知 k < ( 2 n + 1 ) m i n = 3 k<(2n+1)_{min}=3 k<(2n+1)min=3.

【法2】:借助二次函数的对称性和单调性,

a n = ( n − k 2 ) 2 − k 2 4 a_n=(n-\cfrac{k}{2})^2-\cfrac{k^2}{4} an=(n2k)24k2,其对称轴是 n = k 2 n=\cfrac{k}{2} n=2k

要使得 { a n } \{a_n\} {an}单调递增,

则必须且只需 k 2 < 3 2 \cfrac{k}{2}<\cfrac{3}{2} 2k<23,解得 k < 3 k<3 k<3,故选 B B B

【法3】:尝试导数法。

a n = f ( n ) = n 2 − k n a_n=f(n)=n^2-kn an=f(n)=n2kn为单调递增数列,则 f ′ ( n ) ≥ 0 f'(n)\ge 0 f(n)0 n ∈ N ∗ n\in N^* nN上恒成立,

f ′ ( n ) = 2 n − k ≥ 0 f'(n)=2n-k\ge 0 f(n)=2nk0 n ∈ N ∗ n\in N^* nN上恒成立,分离参数得到,

k ≤ 2 n k\leq 2n k2n n ∈ N ∗ n\in N^* nN上恒成立,即 k ≤ ( 2 n ) m i n = 2 k\leq (2n)_{min}=2 k(2n)min=2

k ≤ 2 k\leq 2 k2。这个解法是错误的。

错因分析:数列 a n = f ( n ) a_n=f(n) an=f(n)单调递增,但函数 y = f ( x ) y=f(x) y=f(x)不一定单调递增,

但是若函数 y = f ( x ) y=f(x) y=f(x)单调递增,则其对应的数列 a n = f ( n ) a_n=f(n) an=f(n)必然单调递增。

感悟反思:

1、法1转化为恒成立问题,很好理解;

2、法2很容易错解为 k 2 < 1 \cfrac{k}{2}<1 2k<1,故 k < 2 k<2 k<2,其实这是充分不必要条件,也就是说遗漏了一部分的解集,可以看看上面的图像解释。

3、数列 { a n } \{a_n\} {an}单调递增的充要条件是 a n + 1 > a n a_{n+1}>a_n an+1>an,而不是 f ′ ( n ) ≥ 0 f'(n)\ge 0 f(n)0恒成立。

【2019届•高三理科数学课时作业】已知等差数列 { a n } \{a_n\} {an}的前 n n n项和为 S n S_n Sn,其中 n ∈ N ∗ n\in N^* nN,则下列命题错误的是【】

$A.$若$a_n>0$,则$S_n>0$
$B.$若$S_n>0$,则$a_n>0$
$C.$若$a_n>0$,则$\{S_n\}$是单调递增数列
$D.$若$\{S_n\}$是单调递增数列,则$a_n>0$

分析:选项 A A A:由于 a n > 0 a_n>0 an>0,由 S n = n ( a 1 + a n ) 2 S_n=\cfrac{n(a_1+a_n)}{2} Sn=2n(a1+an)可得, S n > 0 S_n>0 Sn>0,或由定义式可知 S n = a 1 + a 2 + ⋯ + a n > 0 S_n=a_1+a_2+\cdots+a_n>0 Sn=a1+a2++an>0;而且由 a n > 0 a_n>0 an>0能得到 d ≥ 0 d\ge 0 d0,否则 d < 0 d<0 d<0就不能保证 a n > 0 a_n>0 an>0。故选项 A A A正确;

选项 B B B:由于 S n > 0 S_n>0 Sn>0,则可知 d ≥ 0 d\ge 0 d0,否则不能保证 S n > 0 S_n>0 Sn>0。这样得到 a n = a 1 + ( n − 1 ) d > 0 a_n=a_1+(n-1)d>0 an=a1+(n1)d>0,故选项 B B B正确;

选项 C C C:由于 a n > 0 a_n>0 an>0,则可知 d ≥ 0 d\ge 0 d0,可知数列 { S n } \{S_n\} {Sn}是单调递增数列,故选项 C C C正确;

选项 D D D:由数列 { − 1 , 1 , 3 , 5 , ⋯   } \{-1,1,3,5,\cdots\} {1135}可知, S 1 = − 1 S_1=-1 S1=1 S 2 = 0 S_2=0 S2=0 S 3 = 3 S_3=3 S3=3 S 4 = 8 S_4=8 S4=8,则数列 { S n } \{S_n\} {Sn}是单调递增数列,但不能保证 a n > 0 a_n>0 an>0,故选项 D D D不正确;

综上所述,故选 D D D

反思总结:若有 a n > 0 a_n>0 an>0,则即使数列不是等差数列,也必有 S n > 0 S_n>0 Sn>0,且有数列 { S n } \{S_n\} {Sn}是单调递增数列。

【2019届•高三理科数学课时作业】【2018广东潮州二模】在我国古代著名的数学专著《九章算术》中有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢?【】

$A.8日$ $B.9日$ $C.12日$ $D.16日$

分析:良马日行构成等差数列 { a n } \{a_n\} {an},其中 a 1 = 103 a_1=103 a1=103,公差 d 1 = 13 d_1=13 d1=13,其前 n n n项和为 S n S_n Sn

驽马日行构成等差数列 { b n } \{b_n\} {bn},其中 b 1 = 97 b_1=97 b1=97,公差 d 2 = − 1 2 d_2=-\cfrac{1}{2} d2=21,其前 n n n项和为 T n T_n Tn

设两马 n n n日能相逢,则由题可知, S n + T n = 2 × 1125 S_n+T_n=2\times 1125 Sn+Tn=2×1125,即 103 n + n ( n − 1 ) 2 × 13 + 97 n + n ( n − 1 ) 2 × ( − 1 2 ) = 2250 103n+\cfrac{n(n-1)}{2}\times 13+97n+\cfrac{n(n-1)}{2} \times (-\cfrac{1}{2})=2250 103n+2n(n1)×13+97n+2n(n1)×(21)=2250

解得 n = 9 n=9 n=9,或者由上式直接验证得到 n = 9 n=9 n=9,故选 B B B

【2018广东中山期末】已知等差数列 { a n } \{a_n\} {an}的前 n n n项和为 S n S_n Sn S 4 = 40 S_4=40 S4=40 S n = 210 S_n=210 Sn=210 S n − 4 = 130 S_{n-4}=130 Sn4=130,则 n n n=【】

$A.12$ $B.14$ $C.16$ $D.18$

法1:建立相应的方程组求解即可,只是运算可能复杂些;

法2:利用等差数列的性质, S n − S n − 4 = 80 S_n-S_{n-4}=80 SnSn4=80,即 a n + a n − 1 + a n − 2 + a n − 3 = 80 a_n+a_{n-1}+a_{n-2}+a_{n-3}=80 an+an1+an2+an3=80

a 1 + a 2 + a 3 + a 4 = 40 a_1+a_2+a_3+a_4=40 a1+a2+a3+a4=40,两式相加,得到 4 ( a 1 + a n ) = 120 4(a_1+a_n)=120 4(a1+an)=120,即 a 1 + a n = 30 a_1+a_n=30 a1+an=30

S n = n ( a 1 + a n ) 2 = 210 S_n=\cfrac{n(a_1+a_n)}{2}=210 Sn=2n(a1+an)=210,则 n = 14 n=14 n=14,故选 B B B

【数列的相关运算】已知数列 { a n } \{a_n\} {an}是等差数列,其前 n n n项和为 S n S_n Sn,已知 S 6 = 42 S_6=42 S6=42 S 12 = 156 S_{12}=156 S12=156,求 S 18 S_{18} S18的值。

【法1:以 a 1 a_1 a1 d d d为元的方程组法】利用 S n = n a 1 + n ( n − 1 ) 2 × d S_n=na_1+\cfrac{n(n-1)}{2}\times d Sn=na1+2n(n1)×d得到,

{ S 6 = 6 a 1 + 15 d = 42 S 12 = 12 a 1 + 66 d = 156 \begin{cases}S_6=6a_1+15d=42\\S_{12}=12a_1+66d=156\end{cases} {S6=6a1+15d=42S12=12a1+66d=156,解得 { a 1 = 2 d = 2 \begin{cases}a_1=2\\d=2\end{cases} {a1=2d=2

S 18 = 18 a 1 + 18 × 17 2 × 2 = 342 S_{18}=18a_1+\cfrac{18\times17}{2}\times 2=342 S18=18a1+218×17×2=342

【法2:以 a a a b b b为元的方程组法】由等差数列的性质知道,其前 n n n项和公式可以写成这样: S n = a n 2 + b n S_n=an^2+bn Sn=an2+bn

由此得到, { S 6 = 36 a + 6 b = 42 S 12 = 144 a + 12 b = 156 \begin{cases}S_6=36a+6b=42\\S_{12}=144a+12b=156\end{cases} {S6=36a+6b=42S12=144a+12b=156,解得 { a = 1 b = 1 \begin{cases}a=1\\b=1\end{cases} {a=1b=1

S 18 = 1 × 1 8 2 + 1 × 18 = 342 S_{18}=1\times 18^2+1\times 18=342 S18=1×182+1×18=342

【法3:等差数列性质,函数法】注意到 S n n = a n + b \cfrac{S_n}{n}=an+b nSn=an+b,即表明数列 { S n n } \{\cfrac{S_n}{n}\} {nSn}也是一个等差数列。

由于 S 6 6 \cfrac{S_6}{6} 6S6 S 12 12 \cfrac{S_{12}}{12} 12S12 S 18 18 \cfrac{S_{18}}{18} 18S18分别是数列的第 6 , 12 , 18 6,12,18 6,12,18项,故这三项也是成等差数列的,

则有$2\times\cfrac{S_{12}}{12}=\cfrac{S_6}{6}+\cfrac{S_{18}}{18} $,即$2\times\cfrac{156}{12}=\cfrac{42}{6}+\cfrac{S_{18}}{18} $,

解得 S 18 = 342 S_{18}=342 S18=342

【法4:等差数列性质法】由于 S 6 , S 12 − S 6 , S 18 − S 12 S_6,S_{12}-S_6,S_{18}-S_{12} S6S12S6S18S12成等差数列,

故有 2 ( S 12 − S 6 ) = S 6 + S 18 − S 12 2(S_{12}-S_6)=S_6+S_{18}-S_{12} 2(S12S6)=S6+S18S12,即 2 ( 156 − 42 ) = 42 + S 18 − 156 2(156-42)=42+S_{18}-156 2(15642)=42+S18156

解得 S 18 = 3 ( 156 − 42 ) = 342 S_{18}=3(156-42)=342 S18=3(15642)=342

综合应用

【绝对值数列求和】已知数列 { a n } \{a_n\} {an}的通项公式是 a n = 3 n − 63 a_n=3n-63 an=3n63,它的前 n n n项和为 S n S_n Sn,求数列 { ∣ a n ∣ } \{|a_n|\} {an}的前 n n n项和 T n T_n Tn

解析:令 a n = 3 n − 63 ≤ 0 a_n=3n-63\leq 0 an=3n630,则 n ≤ 21 n\leq 21 n21

故数列 { ∣ a n ∣ } \{|a_n|\} {an}的通项公式为 ∣ a n ∣ = { 63 − 3 n n ≤ 21 3 n − 63 n ≥ 22 |a_n|= \begin{cases}63-3n &n\leq 21 \\ 3n-63 &n\ge22 \end{cases} an={633n3n63n21n22

[备注:由于数列的通项公式是分段函数,所以其前 n n n项和自然也应该用分段函数来表达刻画]

1 。 1^。 1 n ≤ 21 n\leq 21 n21 T n = ∣ a 1 ∣ + ∣ a 2 ∣ + ⋯ + ∣ a n ∣ T_n=|a_1|+|a_2|+\cdots+|a_n| Tn=a1+a2++an

= − a 1 − a 2 − ⋯ − a n =-a_1-a_2-\cdots-a_n =a1a2an

= − ( a 1 + a n ) × n 2 =-\cfrac{(a_1+a_n)\times n}{2} =2(a1+an)×n

= − [ − 60 + ( 3 n − 63 ) ] × n 2 =-\cfrac{[-60+(3n-63)]\times n}{2} =2[60+(3n63)]×n

= − 3 n 2 − 123 n 2 = 123 n − 3 n 2 2 =-\cfrac{3n^2-123n}{2}=\cfrac{123n-3n^2}{2} =23n2123n=2123n3n2.

2 。 2^。 2 n ≥ 22 n\ge 22 n22 T n = ∣ a 1 ∣ + ∣ a 2 ∣ + ⋯ + ∣ a n ∣ T_n=|a_1|+|a_2|+\cdots+|a_n| Tn=a1+a2++an

= − a 1 − a 2 − ⋯ − a 21 + a 22 + ⋯ + a n =-a_1-a_2-\cdots-a_{21}+a_{22}+\cdots+a_n =a1a2a21+a22++an

= ( a 1 + a 2 + ⋯ + a 21 + a 22 + ⋯ + a n ) − 2 ( a 1 + a 2 + ⋯ + a 21 ) =(a_1+a_2+\cdots+a_{21}+a_{22}+\cdots+a_n)-2(a_1+a_2+\cdots+a_{21}) =(a1+a2++a21+a22++an)2(a1+a2++a21)

= S n − 2 S 21 =S_n-2S_{21} =Sn2S21 = [ − 60 + ( 3 n − 63 ) ] n 2 − 2 × [ ( 3 × 1 − 63 ) + ( 3 × 21 − 63 ) ] × 21 2 =\cfrac{[-60+(3n-63)]n}{2}-2\times\cfrac{[(3\times 1-63)+(3\times 21-63)]\times 21}{2} =2[60+(3n63)]n2×2[(3×163)+(3×2163)]×21

$=\cfrac{3n^2-123n}{2}+1260 $.

故数列 { ∣ a n ∣ } \{|a_n|\} {an}的前 n n n项和 T n = { 123 n − 3 n 2 2 n ≤ 21 3 n 2 − 123 n 2 + 1260 n ≥ 22 T_n=\begin{cases}\cfrac{123n-3n^2}{2} &n\leq 21 \\ \cfrac{3n^2-123n}{2}+1260 &n\ge 22\end{cases} Tn= 2123n3n223n2123n+1260n21n22

【2018四川内江一模】已知 S n S_n Sn是等差数列 { a n } \{a_n\} {an}的前 n n n项和, a 1 = 1 a_1=1 a1=1 a 8 = 3 a 3 a_8=3a_3 a8=3a3,则 a 2 S 1 S 2 + a 3 S 2 S 3 + a 4 S 3 S 4 + ⋯ + a n + 1 S n S n + 1 \cfrac{a_2}{S_1S_2}+\cfrac{a_3}{S_2S_3}+\cfrac{a_4}{S_3S_4}+\cdots+\cfrac{a_{n+1}}{S_nS_{n+1}} S1S2a2+S2S3a3+S3S4a4++SnSn+1an+1=___________。

提示: d = 2 d=2 d=2 a n + 1 S n ⋅ S n + 1 = S n + 1 − S n S n ⋅ S n + 1 = 1 S n − 1 S n + 1 \cfrac{a_{n+1}}{S_n\cdot S_{n+1}}=\cfrac{S_{n+1}-S_{n}}{S_n\cdot S_{n+1}}=\cfrac{1}{S_n}-\cfrac{1}{S_{n+1}} SnSn+1an+1=SnSn+1Sn+1Sn=Sn1Sn+11

a 2 S 1 S 2 + a 3 S 2 S 3 + a 4 S 3 S 4 + ⋯ + a n + 1 S n S n + 1 = 1 − 1 ( n + 1 ) 2 \cfrac{a_2}{S_1S_2}+\cfrac{a_3}{S_2S_3}+\cfrac{a_4}{S_3S_4}+\cdots+\cfrac{a_{n+1}}{S_nS_{n+1}}=1-\cfrac{1}{(n+1)^2} S1S2a2+S2S3a3+S3S4a4++SnSn+1an+1=1(n+1)21

【2019年高考数学试卷理科新课标Ⅱ第19题】已知数列 { a n } \{a_n\} {an}和数列 { b n } \{b_n\} {bn}满足 a 1 = 1 a_1=1 a1=1 b 1 = 0 b_1=0 b1=0 4 a n + 1 = 3 a n − b n + 4 4a_{n+1}=3a_n-b_n+4 4an+1=3anbn+4 4 b n + 1 = 3 b n − a n − 4 4b_{n+1}=3b_n-a_n-4 4bn+1=3bnan4

(1).证明: { a n + b n } \{a_n+b_n\} {an+bn}是等比数列, { a n − b n } \{a_n-b_n\} {anbn}是等差数列,

分析:考查等差等比数列的证明方法(定义法和等差[比]中项法),以及整体意识或字母的内涵和方程思想。

解析:由题设可知 4 a n + 1 = 3 a n − b n + 4 4a_{n+1}=3a_n-b_n+4 4an+1=3anbn+4①, 4 b n + 1 = 3 b n − a n − 4 4b_{n+1}=3b_n-a_n-4 4bn+1=3bnan4②,

由①+②得到, 4 ( a n + 1 + b n + 1 ) = 2 ( a n + b n ) 4(a_{n+1}+b_{n+1})=2(a_n+b_n) 4(an+1+bn+1)=2(an+bn);即 a n + 1 + b n + 1 = 1 2 ( a n + b n ) a_{n+1}+b_{n+1}=\cfrac{1}{2}(a_n+b_n) an+1+bn+1=21(an+bn)

又由于 a 1 + b 1 = 1 ≠ 0 a_1+b_1=1\neq 0 a1+b1=1=0,所以数列 { a n + b n } \{a_n+b_n\} {an+bn}是首项为 1 1 1,公比为 1 2 \cfrac{1}{2} 21的等比数列;

由①-②得到, 4 ( a n + 1 − b n + 1 ) = 4 ( a n − b n ) + 8 4(a_{n+1}-b_{n+1})=4(a_n-b_n)+8 4(an+1bn+1)=4(anbn)+8;即 a n + 1 − b n + 1 = a n − b n + 2 a_{n+1}-b_{n+1}=a_n-b_n+2 an+1bn+1=anbn+2

又由于 a 1 − b 1 = 1 a_1-b_1=1 a1b1=1,所以数列 { a n − b n } \{a_n-b_n\} {anbn}是首项为 1 1 1,公差为 2 2 2的等差数列;

【注意细节】由 a n + 1 + b n + 1 = 1 2 ( a n + b n ) a_{n+1}+b_{n+1}=\cfrac{1}{2}(a_n+b_n) an+1+bn+1=21(an+bn)不能得到 a n + 1 + b n + 1 a n + b n = 1 2 \cfrac{a_{n+1}+b_{n+1}}{a_n+b_n}=\cfrac{1}{2} an+bnan+1+bn+1=21,还需要条件 a 1 + b 1 ≠ 0 a_1+b_1\neq 0 a1+b1=0的配合;

相关链接:对数列中 a n a_n an的内涵的理解

(2).求 { a n } \{a_n\} {an} { b n } \{b_n\} {bn}的通项公式;

分析:考察数列的通项公式的求法;

解析:由(1)分别写出数列 { a n + b n } \{a_n+b_n\} {an+bn}和数列 { a n − b n } \{a_n-b_n\} {anbn}的通项公式,

a n + b n = 1 × ( 1 2 ) n − 1 = 1 2 n − 1 a_n+b_n=1\times (\cfrac{1}{2})^{n-1}=\cfrac{1}{2^{n-1}} an+bn=1×(21)n1=2n11③, a n − b n = 1 + ( n − 1 ) × 2 = 2 n − 1 a_n-b_n=1+(n-1)\times 2=2n-1 anbn=1+(n1)×2=2n1④;

由③+④,变形整理得到, a n = 1 2 n + n − 1 2 a_n=\cfrac{1}{2^n}+n-\cfrac{1}{2} an=2n1+n21 n ∈ N ∗ n\in N^* nN

由③-④,变形整理得到, b n = 1 2 n − n + 1 2 b_n=\cfrac{1}{2^n}-n+\cfrac{1}{2} bn=2n1n+21 n ∈ N ∗ n\in N^* nN

相关链接:1、求数列的通项公式;2、方程思想

【2021 全国高三二模】已知数列 { a n } \{a_{n}\} {an} 是等差数列, 其前 n n n 项和为 S n S_{n} Sn, 有下列四个命题:

甲: a 18 = 0 a_{18}=0 a18=0; 乙: S 35 = 0 S_{35}=0 S35=0; 丙: a 17 − a 19 = 0 a_{17}-a_{19}=0 a17a19=0; 丁: S 19 − S 16 = 0 S_{19}-S_{16}=0 S19S16=0 .

如果只有一个是假命题, 则该命题是 【 】 【\quad】

$A.甲$ $B.乙$ $C.丙$ $D.丁$

解析:若 S 35 = 0 S_{35}=0 S35=0 ,则 S 35 = 35 ( a 1 + a 35 ) 2 = 0 S_{35}=\cfrac{35\left(a_{1}+a_{35}\right)}{2}=0 S35=235(a1+a35)=0 ,即 a 18 = 0 a_{18}=0 a18=0

a 17 − a 19 = 0 a_{17}-a_{19}=0 a17a19=0 ,所以 - 2 d 2 d 2d = 0 =0 =0 ,即 d = 0 d=0 d=0

S 19 − S 16 = a 17 + a 18 + a 19 = 0 S_{19}-S_{16}=a_{17}+a_{18}+a_{19}=0 S19S16=a17+a18+a19=0 ,所以 a 18 = 0 a_{18}=0 a18=0.

这样命题 甲、乙、丁 为三个等价命题,又因为只有一个是假命题, 所以丙是假命题.

  • 重新编辑于2020-07-23 by WangHai.

  1. m = 1 m=1 m=1得到 a n + 1 = a n + a 1 a_{n+1}=a_n+ a_1 an+1=an+a1
    a n + 1 − a n = a 1 = 2 a_{n+1}-a_n=a_1=2 an+1an=a1=2,不就是等差数列嘛;
    a n = 2 + ( n − 1 ) × 2 = 2 n a_n=2+(n-1)\times 2=2n an=2+(n1)×2=2n↩︎

  2. 详细说明如下:
    a 2 n − 1 = 2 ( 2 n − 1 ) − 1 a_{2n-1}=2(2n-1)-1 a2n1=2(2n1)1
    a 2 n = 2 ( 2 n ) − 1 a_{2n}=2(2n)-1 a2n=2(2n)1
    故合二为一得到,
    a n = 2 n − 1 a_n=2n-1 an=2n1 n ∈ N ∗ n\in N^* nN,即 a n + 1 − a n = 2 a_{n+1}-a_n=2 an+1an=2↩︎

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值