损失函数

损失函数(目标函数)

一、损失函数概述

    损失函数即为目标函数,用来衡量计算值与真实值之间的差距。
    经验风险损失:即为训练数据预测结果和真实结果之间的差距。
    结构风险损失:即在经验风险损失的基础之上加上了正则化项。
    期望风险损失:即为测试数据的预测结果和真实数据之间的差距。

二、常见的损失函数

2.1 0-1风险损失

    数学公式:

    即预测正确即为1,预测错误即为0。传统方法中感知机即为0-1风向损失函数。
    其中对0-1风险损失的改进:

    即预测结果与真实结果之间加入了一个弹性变量T。

2.2 绝对值损失

    数学公式:

2.3 平方损失函数

    数学公式:

2.4 对数损失函数

    数学公式:

    指的得是样本X在分类Y的情况下,使得概率P(Y|X)达到最大值。其中会使用到极大似然估计,主要应用在逻辑斯蒂回归中。

2.5 指数损失函数

    数学公式:

    在boosting比较常用到,比如Adaboosting。

2.6 铰链损失函数(Hinge loss)

    数学公式:

    y是预测值,在-1到+1之间,t为目标值(-1或者+1)。

2.7 交叉熵损失函数

    数学公式:

    衡量模型输出的值和样本真实值之间的相似程度,其中yi是第i个样本的真实值,yi的取值只能是0或者1。yi为预测的值。y^i为1的时候,只有预测的值yi越大的时候,损失才会越小。

三、人脸识别方向的损失函数

3.1 softmax损失函数

    数学公式:

    其中N为batchsize的样本数量,n表示类别数目,j表示样本第j个类别的得分。yi表示真实的样本类别。
    softmax不能像度量学习的方法一样可以优化类间和类内距离。人脸识别和行人再识别方向的目的一样,是为了得到泛化能力比较强的feature,与其分类能力并不是完全等价的。

3.2 Triplet Loss

    数学公式:

    同时输入三张图片,其中一对正样本图片,还有一个负样本的图片,通过对两幅图片提取特征,然后计算器其相似性,使得正样本对之间的类内距离减小,负样本对之间的类间距离扩大。

3.3 Center loss

    问题:

    从图中我们可以看到,softmax分类的特征点中,确实是正确分类了样本点,但是明显可以看出有的样本之间的类间距离大于类内距离。我们在做行人再识别还有人脸识别的时候,需要提取的是有判别力的特征,因此要尽可能的缩小类内距离。
数学公式:

    左边是softmax损失函数,右边是每个样本点与其中心点计算的损失。

3.4 L-softmax( Large-margin softmax)

    数学公式:

    原先对于分类函数,如果xk属于第1类样本,我们则希望:

    即

    我们希望上面的数值尽可能的大,对于cos函数其在0-Π之间是单调递减函数,因此引入了一个m>=1的数值,我们约束:

    其中0<=θ<=Π/m,通过控制m的值,会使得负样本对之间的类间距离增大,正样本之间的类内距离减小,类内更加紧凑。

3.5 A-softmax(SphereFace,angular softmax loss)

    数学公式:

    A-softmax在softmax 的基础上将权重归一化,即||w|| = 1,bias = 0。与L-softmax相比,最大的区别就是将W权重归一化了。

四、参考链接

1、https://blog.csdn.net/u014380165/article/details/76946339
2、https://mp.weixin.qq.com/s/vPU4cAM27l8p0OjZA1UvRA

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值