2021-11-28 决策树(一)

本文介绍了决策树的基本概念,包括其应用、形态和学习过程。在学习决策树时,通常采用贪心算法来寻找局部最优解。此外,文章讨论了不确定性度量——信息熵和信息增益,信息增益用于衡量特征对分类不确定性的影响。
摘要由CSDN通过智能技术生成

第七章——决策树(一)

7.1 理解决策树
7.2 不确定性及信息增益

7.1 理解决策树

1、决策树的应用

  • 决策树是一种基本的分类与回归的方法,它是几个经典集成模型(随机森林,提升树)的基础。
    在这里插入图片描述

2、决策树的形态与决策边界

  • 决策树由节点(跟节点、叶节点)和边组成。
  • 从数据中得到决策树,需要学习到三样东西:树的形状、每一个决策的阈值θ、叶节点的值。

3、决策树的学习

  • 在学习树的结构时会遇到NP-hard问题,一般般对于这类的问题是没有⼀个很好的⽅式来求出全局最优解的。而经典的近似算法——“贪心算法”(信息增益),每次只考虑局部最好的情况,所以⼀般带来的是相对最好的解决⽅案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值