2021-12-13 集成模型

本文深入探讨了集成模型,特别是随机森林的优势和稳定性。集成模型通过组合多个个体学习器,如决策树,提高泛化性能,防止过拟合。随机森林在训练和抗噪声方面表现出色,并提供了变量重要性排序。文章还讨论了随机森林的构建方法,强调多样性对模型稳定性的重要性,并指出尽管随机森林不易过拟合,但调参仍是避免过拟合的关键。
摘要由CSDN通过智能技术生成

第八章——集成模型

8.1 集成模型和它的优势
8.2 集成模型的稳定性
8.3 随机森林的训练
8.4 随机森林的过拟合

8.1 集成模型和它的优势

1、什么是集成模式

  • 单个学习器要么容易欠拟合要么容易过拟合,为了获得泛化性能优良的学习器,可以训练多个个体学习器,通过一定的结合策略,最终形成一个强学习器。这种集成多个个体学习器的方法称为集成学习(ensemble learning)。

在这里插入图片描述

  • 几乎对于所有分类问题,集成模型大都是首选,主要是因为它的效果很好
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值