第八章——集成模型
8.1 集成模型和它的优势
8.2 集成模型的稳定性
8.3 随机森林的训练
8.4 随机森林的过拟合
8.1 集成模型和它的优势
1、什么是集成模式
- 单个学习器要么容易欠拟合要么容易过拟合,为了获得泛化性能优良的学习器,可以训练多个个体学习器,通过一定的结合策略,最终形成一个强学习器。这种集成多个个体学习器的方法称为集成学习(ensemble learning)。
- 几乎对于所有分类问题,集成模型大都是首选,主要是因为它的效果很好
8.1 集成模型和它的优势
8.2 集成模型的稳定性
8.3 随机森林的训练
8.4 随机森林的过拟合
8.1 集成模型和它的优势
1、什么是集成模式