随机森林为何要有放回抽样

随机森林为何要有放回抽样

标签:训练   不同   估计   采样   数据   引入   

随机森林为什么要用有放回的随机采样

好了,回到正题吧,随机森林是可以降低模型的方差,这里借鉴了下其它同学的回答,记录一下。

1. 如果不放回抽样,那么每棵树用的样本完全不同,基学习器之间的相似性小,投票结果差,模型偏差大;

2. 如果不抽样,那么基学习器用所有样本训练,基学习器太相似差异性太小,模型的泛化性就很差;

3. 为什么不随机抽样?这里自助采样可以产生一部分袋外样本,可以用来做袋外估计;另外自助采样一定程度上改变了每个基学习器所用数据的样本分布,一定程度上引入了噪音,增加了模型的泛化能力。

随机森林为何要有放回抽样

标签:训练   不同   估计   采样   数据   引入   

原文:https://www.cnblogs.com/MaiYatang/p/12094856.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值