随机森林中的自助采样(Bootstrap Sampling)是有放回抽样吗?自助采样过程描述

本文详细介绍了随机森林中使用的自助采样(Bootstrap Sampling)原理,这是一种有放回的随机抽样方法,用于创建新数据集。在随机森林中,每个决策树都是基于自助采样得到的不同训练数据集训练出来的,增强了模型的多样性和预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随机森林是一种集成学习方法,它通过组合多个决策树来进行预测。在随机森林中,每个决策树的训练数据是通过自助采样(Bootstrap Sampling)得到的。本文将详细介绍自助采样的概念以及在随机森林中的应用,并提供相应的源代码示例。

  1. 自助采样(Bootstrap Sampling)的概念
    自助采样是一种有放回的随机抽样方法,用于从给定的数据集中生成具有相同大小的新数据集。假设原始数据集包含N个样本,那么自助采样就是从中随机选择一个样本并将其放回原始数据集,然后再进行下一次的随机选择,重复这个过程共N次,最终得到一个具有N个样本的新数据集。由于每次选择都是独立的,因此一些样本可能被选择多次,而另一些样本可能根本没有被选择。

  2. 随机森林中的自助采样过程描述
    随机森林中的每个决策树都是通过自助采样得到的。假设原始训练数据集包含M个样本,每个样本包含d个特征。那么在构建每个决策树的训练数据集时,首先从原始数据集中使用自助采样方法生成一个具有M个样本的新数据集。这个新数据集可能包含重复样本和缺失样本。

接下来,使用这个新数据集来训练一个决策树模型。在每个节点上,从所有的特征中随机选择一部分特征,然后使用某种准则(例如信息增益或基尼指数)来选择最佳的特征进行分裂。这个过程不断递归地进行,直到达到停止条件(例如达到最大深度或节点中的样本数量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值