1. 基础知识点
路程s、速度v、时间t之间的关系:S= vt, v = s/t
备注:t一定时,S与V成正比,S一定,vt成反比
2. 对于直线型的路程问题
2.1 相遇问题
甲乙分别从A、B两点,在A,B 两点间C 相遇。可以得到:
- 相遇时,时间 t 相等
- 路程S = v甲*t + v乙 *t -> t = S / (v甲 + v乙)
- V甲/V乙 = S甲/ S乙
2.2 追及问题
如下图,甲从A点出发,乙从B点出发,甲乙在C点相遇,即甲在C点追上了乙,可以得到:
|____S_____|______________|
A B C
- 相遇时,时间 t 相等
- 甲行驶的路程是AC,乙行驶的路程是BC,设AB为S
S = V甲t - V乙t
t = (V甲-V乙)/ S - V甲/V乙 = S甲/ S乙
3. 对于圆圈型的路程问题
3.1 同向问题
等量关系:经历的时间相同
甲乙同向跑操场,甲每追上乙,路程差为1圈:
- V甲t - V乙t = S
- t = S / (V甲-V乙)
甲乙每相遇一次,甲比乙多跑一圈,设一圈路程S,若相遇n次,则相遇n圈,即路程ns的路程关系
3.2 反向问题
等量关系:经历的时间相同
甲乙反向跑操场,每相遇一次,甲乙的路程和为1圈,若相遇n此,则有ns的路程关系
可得第一次追及的时间关系t
- V甲t + v乙t = S
- t = S / (v甲 + v乙)
4. 顺水、逆水问题
- V顺 = V船+V水
- V逆 = V船-V水
5. 相对速度
两个物体运动时,可将一个作为参照物看成相对静止的。
5.1 同向运动
场景为甲动车车长L1, 乙动车车长L2,甲乙同向运动,求甲超过(通过)乙时的相对速度和时间。
- V同向 = V甲-V乙
- t = (L1 + L2) / V同向 = (L1 + L2) / (V甲-V乙)
5.2 相向运动
场景为甲动车车长L1, 乙动车车长L2,甲乙相向运动,求甲通过乙时的相对速度和时间。
- V相向 = V甲+V乙
- t = (L1 + L2) / V同向 = (L1 + L2) / (V甲+V乙)
6. 直线型的速度变化问题
特征分析:该类型提的典型标志是在相同路线的前提下,一定会涉及两种速度,而且这两种速度会引起时间差,在解题中直接套用如下公式即可: V1V2 = (S速度差) / 时间差
特值法:缩小5倍再扩大5倍
推导过程:
V1 ---->
|_____________________S_______________________| 时间差
V2 ---->
V1>V2
S/V2 - S/V1 = 时间差
去除分母:SV1 - SV2 = 时间差(V1*V2)
V1*V2 = (S*速度差) / 时间差
6.1 例题1
随着国民经济持续增长,我国的铁路运输进行了6次提速。已知北京到广州的路程是 2208 km, 第六次提速后速度比第五次提速后的速度增加了 20%,时间却少用了两小时,求第六次提速后的速度?
答:220.8
解:满足直线型的速度变化题型,可以套用公式:V1*V2 = (S*速度差) / 时间差
设第五次速度V,则第六次速度为1.2V
S/V - S/1.2V = 2
1.2V*V = S * (1.2V-V) / 2
1.2V*V = S * 0.2V/2
1.2V = S * 0.1
V = S/12
第六次速度为1.2V = 1.2 * (S/12) = 12 * (S * 0.1) / 12 = 2208 * 0.1 = 220.8
6.2 例题2
甲乙同时驾车从A地到B地,两地之间相差500公里,甲的速度比乙快20KM/h,结果甲早到1小时15分钟,求甲车的车速是乙的几倍?
答:甲车的车速是乙的1.25倍
特值法:缩小5倍再扩大5倍
解:满足直线型的速度变化题型,可以套用公式:V1*V2 = (S*速度差) / 时间差
设乙速度V,甲速度V+20
V1*V2 = (S*速度差) / 时间差
V*(V+20) = 500 * 20 / (5/4) = 400 * 20
特值法:缩小5倍再扩大5倍
400 * 16 = (400 * 1/5) * (20*5) = 80 * (100)
V*(V+20) = 80 * (100)
得到V = 80
即 乙速度80,甲速度100
甲/乙 = 100/80 = 5/4
甲 = 1.25 乙
6.3 例题3
一辆大巴车从甲城以匀速v行驶可按照预定时间到达乙城,但在距乙城还有150千米外因故障停留了半小时。因此需要以平均每小时增加10千米的速度才能按照预定时间到达乙城,则大巴车原来的速度v为()千米/小时。
答:大巴车原来的速度v为(50)千米/小时
特值法:缩小5倍再扩大5倍
解:
设路程为S,原来总时间:S/V
|___________________|______________________|
A C (150 km) B
V V+10
距乙城还有150千米外因故障停留了半小时,即原来速度与提速的时间差为半小时。
V*(V+10)= (S * 速度差) / 时间差
V*(V+10) = 150 * 10 / (1/2)
V*(V+10) = 300 * 10
特值法:缩小5倍再扩大5倍
V*(V+10) = (300 * 1/5) * (10 * 5)
V*(V+10) = (60) * (50) = 50 * (50 + 10)
得到原来速度:50