MBA-day22 至多至少问题

1. 思路点拨

在分析某对象至少(至多)时,可转化为其余部分最多(最少)来分析

  • 1 每个对象至多至少
  • 2 求整体至多至少
  • 3 求个体至多至少
    至多至少问题

2. 例题

2.1 例题 1

五名选手在一次数学竞赛中共得 404 分,每人得分互不相等,并且其中得分最高的选手得 90 分,求得分最少的选手至多得()分。(每位选手的得分都是整数)

答:得分最少的选手至多得 77 分

A < B < C < D < E(90)
A + B + C + D + E = 404 -> A + B + C + D + 90 = 404
求A 至多得多少分?如果A至多的话,相当于BCDE最少得分情况。
故设B为X,那么A为X-1
A(x-1) + B(x) + C(x+1) + D(x+2) + E(90) = 404
4x + 92 = 404
4x = 78

故 A = (x-1) = 77

2.2 例题 2

某年级共有 8 个班,一次考试中,共有 21 个学生不及格,每班不及格的学生最多 3名,则一班至少有一名学生不及格。
1)二班不及格的人数多于三班
2)四班不及格学生有两名

答:条件1充分,条件2充分

解:根据题意:2,3,4,5,6,7,8 至多的情况下,看是否可以推出一班至少有一名学生不及格,设一班人数x

1)二班不及格的人数多于三班,即二班最多3人,那么三班最多2人
一班 二班 三班 四班 五班 六班 七班 八班
  x    3    2    3    3    3     3   3
x + 3 * 6 + 2 = 21 -> x = 1, 满足一班至少有一名学生不及格

2)四班不及格学生有两名,那么其他班按最多3人不及格的情况考虑
一班 二班 三班 四班 五班 六班 七班 八班
  x    3    3    2    3    3     3   3
x + 3 * 6 + 2 = 21 -> x = 1, 满足一班至少有一名学生不及格

答:条件1充分,条件2充分

2.3 例题 3

某单位发年终奖共 100 万元奖金,奖金金额分别为一等奖 1.5 万元,二等奖 1 万元,三等奖 0.5 万元,则该单位至少 100人
1) 得二等奖人数最多
2) 得三等奖人数最多

答:条件1不充分,条件2充分

解:题意转换:
一等奖 1.5 万元, 人数:x
二等奖 1 万元, 人数:y
三等奖 0.5 万元, 人数:z
1.5x + y + 0.5z = 100
是否可以推出 x + y + z >= 100

1.5x + y + 0.5z = 100 -> x + y + z + 0.5x - 0.5z = 100 -> x + y + z = 100 + 0.5(z-x)
x + y + z >= 100

-> 100 + 0.5(z-x) >= 100, 即该单位至少100人的条件只取决于 三等奖的人数是否大于一等奖人数

故迅速可以得到,1)不充分,2)充分

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

法迪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值