1. 基础知识点
1.1 定义
绝对值 |a| 脱衣服法则,脱去符号
|a| = {
a (a > 0)
0 (a = 0)
-a (a < 0)
}
例如:|x - 3|
1) 若 x > 3 时, 则 |x - 3| = x -3
2) 若 x < 2 时, 则 |x - 3| = 3 - x
1.2 几何意义
|a| 代表 a 点到原点的距离,即|a| >= 0,即|a| 恒大于 0
- 例如 |x - 2|, 代表 x 到 2 之间的距离
- 例如 |x + 4|, 代表 x 到 -4 之间的距离
1.3 性质
-
对称性
|-a| = |a| -
等价性
根号(a^2) = |a| -
自比性
x / |x| = |x| / x
x / |x| = |x| / x = {
若x > 0, 则为 1
若x < 0, 则为 -1
}
- 非负性
|a| >= 0
考点:常见的非负性
1. 代表距离的, |a| >= 0,则恒大于 0
2. a^2, a^4, a^8....a^2n >=0
3. 根号a, 根号4次方a
-> |a| + b^2 + 根号c = 0
-> 隐含:a>=0 b>=0 c>=0
-> a = 0, b = 0, c = 0
2011的真题,求|a-1| + (b-2)^2 + 根号(c -4)= 0, 得 a = 1, b = 2, c = 4
- 不等式
- |f(x)| < a (a > 0) -> -a < f(x) < a
例如 |x| < 2, 推出-> -2 < x < 2
- |f(x)| > a (a > 0) -> f(x) > a 或 f(x) < -a
例如:求|x-1| > 2
x - 1 > 2 或 x - 1 < -2
故 x > 3 或 x < -1