MBA-day29 算术-绝对值初步认识

本文介绍了数学中的绝对值概念,包括其定义、几何意义和性质。绝对值|a|表示数a到原点的距离,总是非负的。讨论了绝对值的对称性、等价性和自比性,并通过实例展示了如何利用这些性质解决不等式问题。此外,还强调了非负性在等式和不等式中的应用,如在求解方程|a-1|+(b-2)^2+√(c-4)=0时,隐含a=1, b=2, c=4。
摘要由CSDN通过智能技术生成

1. 基础知识点

1.1 定义

绝对值 |a| 脱衣服法则,脱去符号

|a| = {
    a  (a  > 0)
    0  (a = 0)
    -a (a < 0)
}

例如:|x - 3|

1) 若 x > 3 时, 则 |x - 3| = x -3
2) 若 x < 2 时, 则 |x - 3| = 3 - x

1.2 几何意义

|a| 代表 a 点到原点的距离,即|a| >= 0,即|a| 恒大于 0

绝对值的几何意义

  • 例如 |x - 2|, 代表 x 到 2 之间的距离
  • 例如 |x + 4|, 代表 x 到 -4 之间的距离

1.3 性质

  1. 对称性
    |-a| = |a|

  2. 等价性
    根号(a^2) = |a|

  3. 自比性
    x / |x| = |x| / x

x / |x| = |x| / x = {
    若x > 0, 则为 1
    若x < 0, 则为 -1
}
  1. 非负性
    |a| >= 0
考点:常见的非负性
1. 代表距离的, |a| >= 0,则恒大于 0
2. a^2, a^4, a^8....a^2n >=0
3. 根号a, 根号4次方a

-> |a| + b^2 + 根号c = 0
-> 隐含:a>=0  b>=0  c>=0
-> a = 0, b = 0, c = 0

2011的真题,求|a-1| + (b-2)^2 + 根号(c -4)= 0, 得 a = 1, b = 2, c = 4

  1. 不等式
  • |f(x)| < a (a > 0) -> -a < f(x) < a

例如 |x| < 2, 推出-> -2 < x < 2

  • |f(x)| > a (a > 0) -> f(x) > a 或 f(x) < -a

例如:求|x-1| > 2

x - 1 > 2 或 x - 1 < -2
故 x > 3 或 x < -1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

法迪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值