Logistic Regression
逻辑回归但是做分类
import os
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
import numpy as np
x_data=torch.Tensor([[1.0],[2.0],[3.0]])
y_data=torch.Tensor([[0],[0],[1]])#二分类问题
class LogisticRegressionModel(torch.nn.Module):
def __init__(self):
super(LogisticRegressionModel, self).__init__()
self.linear=torch.nn.Linear(1,1)#初始话w和b 实现xw+b
def forward(self,x):
y_pred=F.sigmoid(self.linear(x))
return y_pred
model =LogisticRegressionModel()
criterion=torch.nn.BCELoss(size_average=False)
optimizer=torch.optim.SGD(model.parameters(),lr=0.01)
for epoch in range(1000):
y_pre=model(x_data)#计算y_pre
loss=criterion(y_pre,y_data)#计算loss
print(epoch,loss.item())
optimizer.zero_grad()#在backward之前先清零
loss.backward()#求loss对w的导数
optimizer.step()#更新w
x=np.linspace(0,10,200)#x轴 在0-10小时 取200个点
x_t=torch.Tensor(x).view((200,1))#变成200行 1列的矩阵 view相当于numpy中的reshape
y_t=model(x_t)#得到预测值 y_temp
y=y_t.data.numpy()
plt.plot(x,y)
plt.plot([0,10],[0.5,0.5],c='r')
plt.xlabel=('Hours')
plt.ylabel=('Probability of pass')
plt.grid()
plt.show()