detectron2训练自己的数据集和转coco格式

参考

关于coco的格式
https://detectron2.readthedocs.io/en/latest/tutorials/datasets.html#register-a-dataset

注册并训练自己的数据集合https://blog.csdn.net/qq_29750461/article/details/106761382

https://cloud.tencent.com/developer/article/1960793
coco api https://blog.csdn.net/qq_41709370/article/details/108471072

注意这里如果出现说自己的数据没有注册的错误,需要在main里面加上函数plain_register_dataset()注册自己的数据集
在这里插入图片描述

数据转换成coco格式

一些坑:

  • bbox对于coco格式来说[x,y,width,height] x,y是左上角的坐标

  • file_name是图片的绝对路径 要写成xxx.jpg

  • 有些coco文件里说不是必须的字段但是如果没有会报keyerror
    anntations里比如area、iscrowd 可以设置默认值 area可以是bbox的w*h

  • 读取图片shape[0]是height shape[1]是witdh

height = img.shape[0]
width = img.shape[1]

注册数据集

#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
"""
A main training script.

This scripts reads a given config file and runs the training or evaluation.
It is an entry point that is made to train standard models in detectron2.

In order to let one script support training of many models,
this script contains logic that are specific to these built-in models and therefore
may not be suitable for your own project.
For example, your research project perhaps only needs a single "evaluator".

Therefore, we recommend you to use detectron2 as an library and take
this file as an example of how to use the library.
You may want to write your own script with your datasets and other customizations.
"""

import logging
import os
from collections import OrderedDict

import cv2
from detectron2.utils.visualizer import Visualizer

import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch
from detectron2.evaluation import (
    CityscapesInstanceEvaluator,
    CityscapesSemSegEvaluator,
    COCOEvaluator,
    COCOPanopticEvaluator,
    DatasetEvaluators,
    LVISEvaluator,
    PascalVOCDetectionEvaluator,
    SemSegEvaluator,
    verify_results,
)
from detectron2.modeling import GeneralizedRCNNWithTTA

from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets.coco import load_coco_json
import pycocotools
#声明类别,尽量保持
CLASS_NAMES =["background", "military"]
# 数据集路径
DATASET_ROOT = '/home/szr/new_dete/detectron2/datasets'
ANN_ROOT = os.path.join(DATASET_ROOT, 'COCOformat')

TRAIN_PATH = os.path.join(DATASET_ROOT, 'JPEGImages')
VAL_PATH = os.path.join(DATASET_ROOT, 'JPEGImages')

TRAIN_JSON = os.path.join(ANN_ROOT, 'train.json')
VAL_JSON = os.path.join(ANN_ROOT, 'val.json')
# VAL_JSON = os.path.join(ANN_ROOT, 'test.json')

# 声明数据集的子集
PREDEFINED_SPLITS_DATASET = {
    "coco_my_train": (TRAIN_PATH, TRAIN_JSON),
    "coco_my_val": (VAL_PATH, VAL_JSON),
}
#===========以下有两种注册数据集的方法,本人直接用的第二个plain_register_dataset的方式 也可以用register_dataset的形式==================
#注册数据集(这一步就是将自定义数据集注册进Detectron2)

# 注册数据集和元数据
def plain_register_dataset():
    #训练集
    DatasetCatalog.register("coco_my_train", lambda: load_coco_json(TRAIN_JSON, TRAIN_PATH))
    MetadataCatalog.get("coco_my_train").set(thing_classes=CLASS_NAMES,  # 可以选择开启,但是不能显示中文,这里需要注意,中文的话最好关闭
                                                    evaluator_type='coco', # 指定评估方式
                                                    json_file=TRAIN_JSON,
                                                    image_root=TRAIN_PATH)

    #DatasetCatalog.register("coco_my_val", lambda: load_coco_json(VAL_JSON, VAL_PATH, "coco_2017_val"))
    #验证/测试集
    DatasetCatalog.register("coco_my_val", lambda: load_coco_json(VAL_JSON, VAL_PATH))
    MetadataCatalog.get("coco_my_val").set(thing_classes=CLASS_NAMES, # 可以选择开启,但是不能显示中文,这里需要注意,中文的话最好关闭
                                                evaluator_type='coco', # 指定评估方式
                                                json_file=VAL_JSON,
                                                image_root=VAL_PATH)


# 查看数据集标注,可视化检查数据集标注是否正确,
#这个也可以自己写脚本判断,其实就是判断标注框是否超越图像边界
#可选择使用此方法
def checkout_dataset_annotation(name="coco_my_val"):
    #dataset_dicts = load_coco_json(TRAIN_JSON, TRAIN_PATH, name)
    dataset_dicts = load_coco_json(TRAIN_JSON, TRAIN_PATH)
    print(len(dataset_dicts))
    for i, d in enumerate(dataset_dicts,0):
        #print(d)
        img = cv2.imread(d["file_name"])
        visualizer = Visualizer(img[:, :, ::-1], metadata=MetadataCatalog.get(name), scale=1.5)
        vis = visualizer.draw_dataset_dict(d)
        #cv2.imshow('show', vis.get_image()[:, :, ::-1])
        cv2.imwrite('out/'+str(i) + '.jpg',vis.get_image()[:, :, ::-1])
        #cv2.waitKey(0)
        if i == 200:
            break


def build_evaluator(cfg, dataset_name, output_folder=None):
    """
    Create evaluator(s) for a given dataset.
    This uses the special metadata "evaluator_type" associated with each builtin dataset.
    For your own dataset, you can simply create an evaluator manually in your
    script and do not have to worry about the hacky if-else logic here.
    """
    if output_folder is None:
        output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
    evaluator_list = []
    evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
    if evaluator_type in ["sem_seg", "coco_panoptic_seg"]:
        evaluator_list.append(
            SemSegEvaluator(
                dataset_name,
                distributed=True,
                output_dir=output_folder,
            )
        )
    if evaluator_type in ["coco", "coco_panoptic_seg"]:
        evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
    if evaluator_type == "coco_panoptic_seg":
        evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
    if evaluator_type == "cityscapes_instance":
        return CityscapesInstanceEvaluator(dataset_name)
    if evaluator_type == "cityscapes_sem_seg":
        return CityscapesSemSegEvaluator(dataset_name)
    elif evaluator_type == "pascal_voc":
        return PascalVOCDetectionEvaluator(dataset_name)
    elif evaluator_type == "lvis":
        return LVISEvaluator(dataset_name, output_dir=output_folder)
    if len(evaluator_list) == 0:
        raise NotImplementedError(
            "no Evaluator for the dataset {} with the type {}".format(dataset_name, evaluator_type)
        )
    elif len(evaluator_list) == 1:
        return evaluator_list[0]
    return DatasetEvaluators(evaluator_list)


class Trainer(DefaultTrainer):
    """
    We use the "DefaultTrainer" which contains pre-defined default logic for
    standard training workflow. They may not work for you, especially if you
    are working on a new research project. In that case you can write your
    own training loop. You can use "tools/plain_train_net.py" as an example.
    """

    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        return build_evaluator(cfg, dataset_name, output_folder)

    @classmethod
    def test_with_TTA(cls, cfg, model):
        logger = logging.getLogger("detectron2.trainer")
        # In the end of training, run an evaluation with TTA
        # Only support some R-CNN models.
        logger.info("Running inference with test-time augmentation ...")
        model = GeneralizedRCNNWithTTA(cfg, model)
        evaluators = [
            cls.build_evaluator(
                cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
            )
            for name in cfg.DATASETS.TEST
        ]
        res = cls.test(cfg, model, evaluators)
        res = OrderedDict({k + "_TTA": v for k, v in res.items()})
        return res


# def setup(args):
#     """
#     Create configs and perform basic setups.
#     """
#     # cfg = get_cfg()
#     # cfg.merge_from_file(args.config_file)
#     # cfg.merge_from_list(args.opts)
#     # cfg.freeze()
#     # default_setup(cfg, args)
#     # return cfg

def setup(args):
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()
    args.config_file = "/home/szr/new_dete/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml"
    cfg.merge_from_file(args.config_file)  # 从config file 覆盖配置
    cfg.merge_from_list(args.opts)  # 从CLI参数 覆盖配置

    # 更改配置参数
    cfg.DATASETS.TRAIN = ("coco_my_train",)  # 训练数据集名称
    cfg.DATASETS.TEST = ("coco_my_val",)
    cfg.DATALOADER.NUM_WORKERS = 4  # 单线程

    cfg.INPUT.CROP.ENABLED = True
    cfg.INPUT.MAX_SIZE_TRAIN = 640  # 训练图片输入的最大尺寸
    cfg.INPUT.MAX_SIZE_TEST = 640  # 测试数据输入的最大尺寸
    cfg.INPUT.MIN_SIZE_TRAIN = (512, 768)  # 训练图片输入的最小尺寸,可以设定为多尺度训练
    cfg.INPUT.MIN_SIZE_TEST = 640
    # cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING,其存在两种配置,分别为 choice 与 range :
    # range 让图像的短边从 512-768随机选择
    # choice : 把输入图像转化为指定的,有限的几种图片大小进行训练,即短边只能为 512或者768
    cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING = 'range'
    #  本句一定要看下注释!!!!!!!!
    cfg.MODEL.RETINANET.NUM_CLASSES = 2  # 类别数+1(因为有background,也就是你的 cate id 从 1 开始,如果您的数据集Json下标从 0 开始,这个改为您对应的类别就行,不用再加背景类!!!!!)
    # cfg.MODEL.WEIGHTS="/home/yourstorePath/.pth"
    #这个地址可以自己下载或者它会自己联网下载
    cfg.MODEL.WEIGHTS = "detectron2://COCO-Detection/retinanet_R_50_FPN_3x/190397829/model_final_5bd44e.pkl"  # 预训练模型权重
    cfg.SOLVER.IMS_PER_BATCH = 4  # batch_size=2; iters_in_one_epoch = dataset_imgs/batch_size

    # 根据训练数据总数目以及batch_size,计算出每个epoch需要的迭代次数
    # 9000为你的训练数据的总数目,可自定义
    ITERS_IN_ONE_EPOCH = int(1120 / cfg.SOLVER.IMS_PER_BATCH)

    # 指定最大迭代次数
    cfg.SOLVER.MAX_ITER = (ITERS_IN_ONE_EPOCH * 12) - 1  # 12 epochs,
    # 初始学习率
    cfg.SOLVER.BASE_LR = 0.002
    # 优化器动能
    cfg.SOLVER.MOMENTUM = 0.9
    # 权重衰减
    cfg.SOLVER.WEIGHT_DECAY = 0.0001
    cfg.SOLVER.WEIGHT_DECAY_NORM = 0.0
    # 学习率衰减倍数
    cfg.SOLVER.GAMMA = 0.1
    # 迭代到指定次数,学习率进行衰减
    cfg.SOLVER.STEPS = (7000,)
    # 在训练之前,会做一个热身运动,学习率慢慢增加初始学习率
    cfg.SOLVER.WARMUP_FACTOR = 1.0 / 1000
    # 热身迭代次数
    cfg.SOLVER.WARMUP_ITERS = 1000

    cfg.SOLVER.WARMUP_METHOD = "linear"
    # 保存模型文件的命名数据减1
    cfg.SOLVER.CHECKPOINT_PERIOD = ITERS_IN_ONE_EPOCH - 1

    # 迭代到指定次数,进行一次评估
    cfg.TEST.EVAL_PERIOD = ITERS_IN_ONE_EPOCH
    # cfg.TEST.EVAL_PERIOD = 100

    # cfg.merge_from_file(args.config_file)
    # cfg.merge_from_list(args.opts)
    cfg.freeze()
    default_setup(cfg, args)
    return cfg


def main(args):
    cfg = setup(args)

    if args.eval_only:
        model = Trainer.build_model(cfg)
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        res = Trainer.test(cfg, model)
        if cfg.TEST.AUG.ENABLED:
            res.update(Trainer.test_with_TTA(cfg, model))
        if comm.is_main_process():
            verify_results(cfg, res)
        return res

    """
    If you'd like to do anything fancier than the standard training logic,
    consider writing your own training loop (see plain_train_net.py) or
    subclassing the trainer.
    """
    trainer = Trainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    if cfg.TEST.AUG.ENABLED:
        trainer.register_hooks(
            [hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
        )
    return trainer.train()


if __name__ == "__main__":
    args = default_argument_parser().parse_args()
    plain_register_dataset()
    print("Command Line Args:", args)
    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )


  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: Detectron2是Facebook AI Research开发的目标检测框架,可以用来训练COCO数据集。 要训练COCO数据集,需要先下载COCO数据集并解压,然后使用Detectron2提供的训练脚本进行训练。 以下是一个简单的训练命令: ``` python -m detectron2.tools.train_net --config-file configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml --num-gpus 8 --train-subdir detectron2_train_coco --eval-subdir detectron2_eval_coco --data-dir path/to/coco/dataset ``` 这个命令是训练用mask_rcnn_R_50_FPN_3x模型进行coco的实例分割任务,需要注意的是,在这个命令中,需要指定coco数据集的路径,还要根据实际情况调整参数。 ### 回答2: detectron2是Facebook AI Research推出的一款基于PyTorch的目标检测框架,其具有高效、灵活、易用等优点。其支持多种主流数据集训练,其中包括常用的coco数据集coco数据集是一个广泛应用于目标检测、实例分割和人体关键点检测等领域的经典数据集,其包含超过330,000张图像和2.5万个类别,是目前公认的最具挑战性的目标检测数据集之一。 那么,如何使用detectron2训练coco数据集呢?以下是详细步骤: 1. 数据准备 在开始训练前,需要确保已经下载了标注好的coco数据集,并将其换成detectron2可处理的格式,包括分别生成训练集、测试集以及验证集。这部分具体操作可以参考detectron2官方文档或者在GitHub上搜索相关教程。 2. 模型选择 detectron2内置了多种主流目标检测模型,包括Faster R-CNN、Mask R-CNN等,用户可以根据实际需求选择不同的模型进行训练。 3. 模型配置 在配置文件中,需要指定数据、模型、训练和测试参数等相关设置,比如coco数据集的路径、评估指标、优化器等等。需要注意的是,detectron2支持通过命令行参数进行配置调整。 4. 训练 在配置完成后,可以启动detectron2进行模型训练。在训练过程中,用户可以观察模型的训练指标、损失函数、验证结果等指标,以评估模型的性能。 5. 模型评估 在训练完成后,需要对模型进行评估,以了解其在测试集上的表现。用户可以通过运行detectron2的评估脚本,获取AP、AR等评价指标,进一步优化模型性能。 总的来说,detectron2训练coco数据集并不是一项简单的任务,需要对数据集、模型、参数等都进行深入的分析和优化。而通过细致的配置和训练,可以在coco数据集上获得非常好的性能表现。 ### 回答3: Detectron2是Facebook开源的用于计算机视觉模型训练和推理的框架,提供了许多现代化的算法和工具包,支持多种数据集训练和测试。其中,COCO数据集是目前计算机视觉领域中最常用的基准数据集之一,它包含了超过300k个标注的图像,共有80类物体,是一个相对完备的数据集Detectron2支持使用COCO数据集训练模型,下面我们来介绍如何训练COCO数据集。 1. 数据集准备:首先需要从COCO官网下载相应的数据集,在Detectron2中需要将数据集换成特定的格式,即使用COCO API将原始数据集换为json格式,然后再将其换为Detectron2所需的pkl格式。 2. 配置模型和训练参数:Detectron2提供了许多现代化的模型,如Mask R-CNN、RetinaNet、Faster R-CNN等,我们需要根据需要选择合适的模型,然后设定一些超参数,如学习率、批量大小、训练轮数等。 3. 开始训练:在安装好Detectron2后,我们可以使用命令行工具来启动训练,例如:python tools/train_net.py --config-file configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml。在训练过程中,Detectron2会不断地更新模型参数,直至训练完成。 4. 评估模型:Detectron2提供了一个方便的工具用于模型的评估,使用命令行工具即可完成,例如:python tools/train_net.py --config-file configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml --eval-only MODEL.WEIGHTS /path/to/checkpoint_file。在评估过程中,Detectron2会将模型应用于测试集中的图像,然后计算相应的指标,如平均精度等。 5. 使用模型:完成训练和评估后,我们可以使用训练好的模型来进行预测任务。Detectron2提供了许多现代化的工具和方法,使得我们可以轻松地加载模型并进行预测,例如:python demo/demo.py --config-file configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml --input /path/to/image.jpg MODEL.WEIGHTS /path/to/checkpoint_file。 以上就是Detectron2训练COCO数据集的主要步骤,当然具体细节还需要根据实际情况进行调整。总的来说,Detectron2是一个非常优秀的框架,它提供了许多现代化的算法和工具包,使得我们可以轻松地进行计算机视觉任务的训练和测试,是一个非常值得使用的工具。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值