The 1st-place Solution for CVPR 2023 OpenLane Topology in Autonomous Driving Challenge

文章介绍了赢得CVPR2023openlane拓扑比赛的第一名方案,该方案利用PETRv2进行中心线检测,YOLOv8处理交通元素检测,结合MLP进行拓扑预测。针对中心线检测,通过Transformer解码器预测Bezier曲线控制点。交通元素检测则应用了数据增强、类别重采样和伪标签策略提高性能。拓扑预测部分,分别对车道间和车道与交通元素的连接进行建模。
摘要由CSDN通过智能技术生成

背景

CVPR 2023 openlane 拓扑比赛第一名解决方案:
openLane 的四个子任务:
中心线检测,交通元素检测,中心线和中心线的 拓扑,中心线 和 交通元素的拓扑 预测

使用 PETRv2 检测中心线,YOLOv8 检测交通元素,设计了一个简单有效的 基于 mlp 的 head 用于 拓扑预测。

车道中心线检测

使用 PETRv2 检测中心线,修改了 query 表征用于 从中心线的检测。
中心线的表征:使用 transformer 的 decoder 预测 bezier 曲线的 3D 控制点。
query的生成:随件初始化 N 个 lane query,每个lane包括一个 3D控制点,然后对每一个点重复 M 次,最后把这 M 个点 flatten 送进 decoder。

交通元素检测

交通元素检测,使用了 yolov8,使用了几种提升性能的策略:

  1. 数据增强:数据集中缺乏前景样本,采用了 一些 mixup , augmentation ,color gamut on HSV。
  2. 调整分类 loss 的权重:对于交通信号的定位较准,但分类性能不佳,所以调整了困难样本分类loss 的权重
  3. 重采样困难样本:一些类别在数据集中的数量较少,所以重新采样了 视频帧。
  4. 伪标签:数据集中,当交通元素刚出现在视频中时,尺寸较小,是没有标注的。使用模型生成伪标签可以提升性能。
  5. 测试时的增强,将图像 resize道不同的尺寸测试,大尺寸的图像可以提升小目标检测的性能,小尺寸的图像可以提升大尺寸目标的性能。

Lane-Lane Topolog

最后一层 decoded 特征
预测的 lane 坐标,送入 mlp 生成 和 decoded 特征 相同 shape 的特征,
将两个特征 contact 到一起,然后在送入一个 mlp 生成topology 表示

Lane-Traffic topology

直接使用 yolov8 的输出作为输入,将每个 坐标,类别,置信度 concat 到一起,然后投影成 C维的特征向量,输出的 size 为 T x C(根据来看 旷视 知乎 官方号发表的文章来看,这里应该是一个 detr head),lane-traffic 的 topology 特征 NxTxC, 最后也是使用一个 mlp 得到结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值