【paper】MeshCNN: A Network with an Edge 基于边的卷积网络

MeshCNN是一种新颖的网络结构,以边为中心进行卷积操作,解决了3D几何数据处理的问题。该网络通过边折叠进行池化,根据特征值大小选择边进行下采样,并利用非学习方式的反折叠进行上采样。MeshCNN在分类和分割任务中表现出与任务相关性的下采样特性,且其上采样保持了结构一致性,相比PointNet++有明显优势。文章探讨了MeshCNN与PointNet++的差异,并指出MeshCNN的感知域更贴近模型表面空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SIGGRAPH 2019 的一篇paper,很有意思的工作。
论文主页:https://ranahanocka.github.io/MeshCNN/

一、简介

之前看的PointNet++是以顶点为中心定义卷积,这篇是以边为中心定义卷积。这篇paper介绍的以边为单位的卷积操作,非常直观自然,非常优雅(也可能因为最近看spectral的GCN很头疼,所以觉得这种简洁明快的网络设计简直太友好了orz

二、网络设计

卷积

卷积操作
以边为单位定义卷积,那么边的邻域是确定的,不像PointNet++需要通过knn寻找最近的k个邻域点。
任何一条边邻域就是所在两个三角形中的另外两条边,同时作者为了保证卷积操作的不变性,对邻域四条边进行了上图公式中的变换,之后再应用卷积。如果不做上图公式中的变化,对于同一组weight,按abcd的顺序进行卷积和按cdab的顺序进行卷积结果是不一样的。

池化

池化操作
基于边的池化操作也非常好理解,使用了边折叠(ed

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值