scikit-learn使用joblib.dump()持久化模型过程中的问题详解--python

在机器学习过程中,一般用来训练模型的过程比较长,所以我们一般会将训练的模型进行保存(持久化),然后进行评估,预测等等,这样便可以节省大量的时间。

在模型持久化过程中,我们使用scikit-learn提供的joblib.dump()方法,但是在使用过程中会出现很多问题。如我们使用如下语句:

[python]view plaincopy

joblib.dump(clf,'../../data/model/randomforest.pkl')

此语句将产生大量的模型文件,如下图所示


然后,我们再使用joblib.load(‘../../data/model/randomforest.pkl’)进行加载,会出现如下错误:


[python]view plaincopy

Traceback (most recent call last):

File"E:\workspace\forest\com\baihe\RandomForest_losing.py", line65,in

clf = joblib.load('../../data/model/randomforest.pkl')

File"D:\Program Files\python27\lib\site-packages\sklearn\externals\joblib\numpy_pickle.py", line425,inload

obj = unpickler.load()

File"D:\Program Files\python27\lib\pickle.py", line858,inload

dispatch[key](self)

File"D:\Program Files\python27\lib\site-packages\sklearn\externals\joblib\numpy_pickle.py", line285,inload_build

Unpickler.load_build(self)

File"D:\Program Files\python27\lib\pickle.py", line1217,inload_build

setstate(state)

File"_tree.pyx", line2280,insklearn.tree._tree.Tree.__setstate__ (sklearn\tree\_tree.c:18350)

ValueError: Didnotrecognise loaded array layout

正确使用joblib的方法是:设置dump中的compress参数,当设置参数时,模型持久化便会压缩成一个文件。源码中对compress参数的描述如下:


[python]view plaincopy

compress: integerfor0to9, optional

Optional compression levelforthe data.0isno compression.

Higher means more compression, but also slower readand

write times. Using a value of3isoften a good compromise.

See the notesformore details.

以下是我们进行模型持久化的正确操作语句:


[python]view plaincopy

#save model

joblib.dump(clf,'../../data/model/randomforest.pkl',compress=3)

#load model to clf

clf = joblib.load('../../data/model/randomforest.pkl')



文/yido(简书作者)
原文链接:http://www.jianshu.com/p/2459cdf2c58b
著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。
智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值