GPU计算

1 计算设备

在PyTorch中,CPU和GPU可以用torch.device(‘cpu’)和torch.cuda.device(‘cuda’)表示。应该注意的是,cpu设备意味着所有物理CPU和内存。这意味着PyTorch的计算将尝试使用所有CPU核心。然而,gpu设备只代表一个卡和相应的显存。如果有多个GPU,我们使用torch.cuda.device(f’cuda:{i}’)来表示第(i)块GPU((i)从0开始)。另外,cuda:0和cuda是等价的。

import torch
from torch import nn

torch.device('cpu'), torch.cuda.device('cuda'), torch.cuda.device('cuda:1')

查询可用gpu的数量。

torch.cuda.device_count()

定义了两个方便的函数,这两个函数允许我们在请求的GPU不存在的情况下运行代码。

def try_gpu(i=0):  #@save
    """如果存在,则返回gpu(i),否则返回cpu()。"""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

def try_all_gpus():  #@save
    """返回所有可用的GPU,如果没有GPU,则返回[cpu(),]。"""
    devices = [torch.device(f'cuda:{i}')
             for i in range(torch.cuda.device_count())]
    return devices if devices else [torch.device('cpu')]

try_gpu(), try_gpu(10), try_all_gpus()

2 张量与gpu

默认情况下,张量是在CPU上创建的。我们可以查询张量所在的设备

x = torch.tensor([1, 2, 3])
x.device

需要注意的是,无论何时我们要对多个项进行操作,它们都必须在同一个设备上。例如,如果我们对两个张量求和,我们需要确保两个张量都位于同一个设备上,否则框架将不知道在哪里存储结果,甚至不知道在哪里执行计算。

(1) 存储在GPU上

X = torch.ones(2, 3, device=try_gpu())
X

(2) 复制

如果我们要计算X + Y,我们需要决定在哪里执行这个操作。例如,如 图5.6.1 所示,我们可以将X传输到第二个GPU并在那里执行操作。 不要简单地X加上Y, 因为这会导致异常。运行时引擎不知道该怎么做:它在同一设备上找不到数据会导致失败。由于Y位于第二个GPU上,所以我们需要将X移到那里,然后才能执行相加运算。*

(3) 旁注

人们使用GPU来进行机器学习,因为他们希望运行速度快。但是在设备之间传输变量是缓慢的。所以我们希望你百分之百确定你想做一些缓慢的事情。如果深度学习框架只是自动复制而没有崩溃,那么你可能不会意识到你已经编写了一些缓慢的代码。
此外,在设备(CPU、GPU和其他机器)之间传输数据比计算慢得多。这也使得并行化变得更加困难,因为我们必须等待数据被发送(或者接收),然后才能继续进行更多的操作。这就是为什么拷贝操作要格外小心。根据经验,多个小操作比一个大操作糟糕得多。此外,除非你知道自己在做什么,否则,一次执行几个操作比代码中散布的许多单个操作要好得多。如果一个设备必须等待另一个设备才能执行其他操作,那么这样的操作可能会阻塞。这有点像排队订购咖啡,而不像通过电话预先订购时,当你在的时候发现咖啡已经准备好了。
最后,当我们打印张量或将张量转换为NumPy格式时,如果数据不在内存中,框架会首先将其复制到内存中,这会导致额外的传输开销。更糟糕的是,它现在受制于可怕的全局解释器锁,这使得一切都得等待Python完成。

3 神经网络与GPU

神经网络模型可以指定设备。下面的代码将模型参数放在GPU上

net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())

总结

我们可以指定用于存储和计算的设备,例如CPU或GPU。默认情况下,数据在主内存中创建,然后使用CPU进行计算。

深度学习框架要求计算的所有输入数据都在同一设备上,无论是CPU还是GPU。

不经意地移动数据可能会显著降低性能。一个典型的错误如下:计算GPU上每个小批量的损失,并在命令行中将其报告给用户(或将其记录在NumPy ndarray中)时,将触发全局解释器锁,从而使所有GPU阻塞。最好是为GPU内部的日志分配内存,并且只移动较大的日志。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值